summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rwxr-xr-xbin/analyze-kconfig.py24
-rwxr-xr-xbin/eval-kconfig.py48
2 files changed, 69 insertions, 3 deletions
diff --git a/bin/analyze-kconfig.py b/bin/analyze-kconfig.py
index f7ae448..ff220b0 100755
--- a/bin/analyze-kconfig.py
+++ b/bin/analyze-kconfig.py
@@ -13,6 +13,8 @@ import kconfiglib
import logging
import os
+import numpy as np
+
from dfatool.loader import KConfigAttributes
from dfatool.model import KConfigModel
@@ -48,6 +50,15 @@ def main():
type=lambda level: getattr(logging, level.upper()),
help="Set log level",
)
+ parser.add_argument(
+ "--info", action="store_true", help="Show Kconfig and benchmark information"
+ )
+ parser.add_argument(
+ "--sample-size",
+ type=int,
+ help="Restrict model generation to N random samples",
+ metavar="N",
+ )
parser.add_argument("kconfig_path", type=str, help="Path to Kconfig file")
parser.add_argument(
"model",
@@ -64,7 +75,15 @@ def main():
if os.path.isdir(args.model):
data = KConfigAttributes(args.kconfig_path, args.model)
- model = KConfigModel.from_benchmark(data, args.attribute)
+
+ if args.sample_size:
+ shuffled_data_indices = np.random.permutation(np.arange(len(data.data)))
+ sample_indices = shuffled_data_indices[: args.sample_size]
+ model = KConfigModel.from_benchmark(
+ data, args.attribute, indices=sample_indices
+ )
+ else:
+ model = KConfigModel.from_benchmark(data, args.attribute)
if args.max_loss:
model.max_loss = args.max_loss
model.build_tree()
@@ -73,6 +92,9 @@ def main():
with open(args.model, "r") as f:
model = KConfigModel.from_json(json.load(f))
+ if args.info:
+ print("TODO")
+
if args.export_tree:
with open(args.export_tree, "w") as f:
json.dump(model.to_json(), f)
diff --git a/bin/eval-kconfig.py b/bin/eval-kconfig.py
index 7f48b52..7bc0c41 100755
--- a/bin/eval-kconfig.py
+++ b/bin/eval-kconfig.py
@@ -37,6 +37,19 @@ def main():
parser.add_argument(
"--with-choice-node", action="store_true", help="Use non-binary Choice Nodes"
)
+ parser.add_argument(
+ "--max-loss",
+ type=float,
+ help="Maximum acceptable model loss for DecisionTree Leaves",
+ default=10,
+ )
+ # Falls die population exhaustive ist, kann man nun den generalization error berechnen
+ parser.add_argument(
+ "--sample-size",
+ type=int,
+ help="Perform model generation and validation with N random samples from the population",
+ metavar="N",
+ )
parser.add_argument("kconfig_path", type=str, help="Path to Kconfig file")
parser.add_argument(
"experiment_root", type=str, help="Experiment results directory"
@@ -54,11 +67,26 @@ def main():
k = 10
- partition_pairs = validation._xv_partitions_kfold(len(data.data), k)
+ if args.sample_size:
+ shuffled_data_indices = np.random.permutation(np.arange(len(data.data)))
+ sample_indices = shuffled_data_indices[: args.sample_size]
+ nonsample_indices = shuffled_data_indices[args.sample_size :]
+ partition_pairs = validation._xv_partitions_kfold(args.sample_size, k)
+ partition_pairs = list(
+ map(
+ lambda tv: (shuffled_data_indices[tv[0]], shuffled_data_indices[tv[1]]),
+ partition_pairs,
+ )
+ )
+ else:
+ partition_pairs = validation._xv_partitions_kfold(len(data.data), k)
+
measures = list()
for training_set, validation_set in partition_pairs:
model = KConfigModel.from_benchmark(data, args.attribute, indices=training_set)
model.with_choice_node = args.with_choice_node
+ if args.max_loss:
+ model.max_loss = args.max_loss
model.build_tree()
measures.append(model.assess_benchmark(data, indices=validation_set))
@@ -71,11 +99,27 @@ def main():
print("10-fold Cross Validation:")
print(f"MAE: {aggregate['mae']:.0f} B")
- print(f"SMAPE: {aggregate['smape']:.0f} %")
+ print(f"SMAPE: {aggregate['smape']:.1f} %")
print(f"Unpredictable Configurations: {aggregate['unpredictable_count']}")
print(aggregate)
+ if args.sample_size:
+ print("Estimated Generalization Error")
+ model = KConfigModel.from_benchmark(
+ data, args.attribute, indices=sample_indices
+ )
+ model.with_choice_node = args.with_choice_node
+ if args.max_loss:
+ model.max_loss = args.max_loss
+ model.build_tree()
+ generalization_measure = model.assess_benchmark(data, indices=nonsample_indices)
+ print(f"MAE: {generalization_measure['mae']:.0f} B")
+ print(f"SMAPE: {generalization_measure['smape']:.1f} %")
+ print(
+ f"Unpredictable Configurations: {generalization_measure['unpredictable_count']}"
+ )
+
"""
if args.model:
with open(args.model, "r") as f: