summaryrefslogtreecommitdiff
path: root/README.md
diff options
context:
space:
mode:
Diffstat (limited to 'README.md')
-rw-r--r--README.md3
1 files changed, 2 insertions, 1 deletions
diff --git a/README.md b/README.md
index aafdc51..0fbbd16 100644
--- a/README.md
+++ b/README.md
@@ -145,7 +145,8 @@ The following variables may be set to alter the behaviour of dfatool components.
| `DFATOOL_KCONF_IGNORE_STRING` | 0, **1** | Ignore string configuration options. These often hold compiler paths and other not really helpful information. |
| `DFATOOL_REGRESSION_SAFE_FUNCTIONS` | **0**, 1 | Use safe functions only (e.g. 1/x returnning 1 for x==0) |
| `DFATOOL_RMT_NONBINARY_NODES` | 0, **1** | Enable non-binary nodes (i.e., nodes with more than two children corresponding to enum variables) in decision trees |
-| `DFATOOL_RMT_RELEVANCE_METHOD` | **none**, std\_by\_param | Ignore parameters deemed irrelevant by the specified heuristic during regression tree generation. Use with caution. |
+| `DFATOOL_RMT_RELEVANCE_METHOD` | **none**, mi, std\_by\_param | Ignore parameters deemed irrelevant by the specified heuristic during regression tree generation. mi := [Mutual Information Regression](https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.mutual_info_regression.html). Use with caution. |
+| `DFATOOL_RMT_RELEVANCE_THRESHOLD` | .. **0.5** .. | Threshold for relevance checks. |
| `DFATOOL_PARAM_RELEVANCE_THRESHOLD` | 0 .. **0.5** .. 1 | Threshold for relevant parameter detection: parameter *i* is relevant if mean standard deviation (data partitioned by all parameters) / mean standard deviation (data partition by all parameters but *i*) is less than threshold |
| `DFATOOL_RMT_LOSS_IGNORE_SCALAR` | **0**, 1 | Ignore scalar parameters when computing the loss for split node candidates. Instead of computing the loss of a single partition for each `x_i == j`, compute the loss of partitions for `x_i == j` in which non-scalar parameters vary and scalar parameters are constant. This way, scalar parameters do not affect the decision about which non-scalar parameter to use for splitting. |
| `DFATOOL_PARAM_CATEGORICAL_TO_SCALAR` | **0**, 1 | Some models (e.g. FOL, sklearn CART, XGBoost) do not support categorical parameters. Ignore them (0) or convert them to scalar indexes (1). Conversion uses lexical order. |