summaryrefslogtreecommitdiff
path: root/bin
diff options
context:
space:
mode:
Diffstat (limited to 'bin')
-rw-r--r--bin/Proof_Of_Concept_PELT.py130
1 files changed, 101 insertions, 29 deletions
diff --git a/bin/Proof_Of_Concept_PELT.py b/bin/Proof_Of_Concept_PELT.py
index 452ff3f..d4878c1 100644
--- a/bin/Proof_Of_Concept_PELT.py
+++ b/bin/Proof_Of_Concept_PELT.py
@@ -59,7 +59,7 @@ def find_knee_point(data_x, data_y, S=1.0, curve='convex', direction='decreasing
return kneepoint
-def calc_pelt(signal, model='l1', jump=5, min_dist=2, range_min=1, range_max=50, num_processes=8, refresh_delay=1,
+def calc_pelt(signal, model='l1', jump=5, min_dist=2, range_min=0, range_max=50, num_processes=8, refresh_delay=1,
refresh_thresh=5, S=1.0, pen_override=None, plotting=False):
# default params in Function
if model is None:
@@ -69,7 +69,7 @@ def calc_pelt(signal, model='l1', jump=5, min_dist=2, range_min=1, range_max=50,
if min_dist is None:
min_dist = 2
if range_min is None:
- range_min = 1
+ range_min = 0
if range_max is None:
range_max = 50
if num_processes is None:
@@ -82,24 +82,23 @@ def calc_pelt(signal, model='l1', jump=5, min_dist=2, range_min=1, range_max=50,
S = 1.0
if plotting is None:
plotting = False
-
# change point detection. best fit seemingly with l1. rbf prods. RuntimeErr for pen > 30
# https://ctruong.perso.math.cnrs.fr/ruptures-docs/build/html/costs/index.html
# model = "l1" #"l1" # "l2", "rbf"
algo = rpt.Pelt(model=model, jump=jump, min_size=min_dist).fit(signal)
### CALC BKPS WITH DIFF PENALTYS
- if pen_override is None:
+ if pen_override is None and range_max != range_min:
# building args array for parallelizing
args = []
# for displaying progression
m = Manager()
q = m.Queue()
- for i in range(range_min, range_max):
+ for i in range(range_min, range_max + 1):
args.append((algo, i, q))
- print('starting kneepoint calculation')
+ print('[INFO]starting kneepoint calculation.')
# init Pool with num_proesses
with Pool(num_processes) as p:
# collect results from pool
@@ -115,30 +114,32 @@ def calc_pelt(signal, model='l1', jump=5, min_dist=2, range_min=1, range_max=50,
last_percentage = percentage
percentage = round(size / (range_max - range_min) * 100, 2)
if percentage >= last_percentage + 2 or i >= refresh_thresh:
- print('Current progress: ' + str(percentage) + '%')
+ print('[INFO]Current progress: ' + str(percentage) + '%')
i = 0
else:
i += 1
time.sleep(refresh_delay)
res = result.get()
-
+ print_info("Finished kneepoint calculation.")
# DECIDE WHICH PENALTY VALUE TO CHOOSE ACCORDING TO ELBOW/KNEE APPROACH
# split x and y coords to pass to kneedle
pen_val = [x[0] for x in res]
fitted_bkps_val = [x[1] for x in res]
# # plot to look at res
-
knee = find_knee_point(pen_val, fitted_bkps_val, S=S, plotting=plotting)
- plt.xlabel('Penalty')
- plt.ylabel('Number of Changepoints')
- plt.plot(pen_val, fitted_bkps_val)
- plt.vlines(knee[0], 0, max(fitted_bkps_val), linestyles='dashed')
- print("knee: " + str(knee[0]))
- plt.show()
+ # plt.xlabel('Penalty')
+ # plt.ylabel('Number of Changepoints')
+ # plt.plot(pen_val, fitted_bkps_val)
+ # plt.vlines(knee[0], 0, max(fitted_bkps_val), linestyles='dashed')
+ # print("knee: " + str(knee[0]))
+ # plt.show()
else:
- # use forced pen value for plotting
- knee = (pen_override, None)
-
+ # use forced pen value for plotting if specified. Else use only pen in range
+ if pen_override is not None:
+ knee = (pen_override, None)
+ else:
+ knee = (range_min, None)
+ print_info("" + str(knee[0]) + " has been selected as kneepoint.")
# plt.plot(pen_val, fittet_bkps_val)
if knee[0] is not None:
bkps = algo.predict(pen=knee[0])
@@ -147,7 +148,8 @@ def calc_pelt(signal, model='l1', jump=5, min_dist=2, range_min=1, range_max=50,
plt.show()
return bkps
else:
- print('With the current thresh-hold S=' + str(S) + ' it is not possible to select a penalty value.')
+ print_error('With the current thresh-hold S=' + str(S) + ' it is not possible to select a penalty value.')
+ exit()
# very short benchmark yielded approx. 1/3 of speed compared to solution with sorting
@@ -221,7 +223,7 @@ def needs_refinement(signal, thresh):
percentile_size = int()
percentile_size = length_of_signal // 100
lower_percentile = sorted_signal[0:percentile_size]
- upper_percentile = sorted_signal[length_of_signal - percentile_size : length_of_signal]
+ upper_percentile = sorted_signal[length_of_signal - percentile_size: length_of_signal]
lower_percentile_mean = np.mean(lower_percentile)
upper_percentile_mean = np.mean(upper_percentile)
median = np.median(sorted_signal)
@@ -234,6 +236,18 @@ def needs_refinement(signal, thresh):
return False
+def print_info(str):
+ print("[INFO]" + str)
+
+
+def print_warning(str):
+ print("[WARNING]" + str)
+
+
+def print_error(str):
+ print("ERROR" + str, file=sys.stderr)
+
+
if __name__ == '__main__':
# OPTION RECOGNITION
opt = dict()
@@ -276,7 +290,7 @@ if __name__ == '__main__':
opt[optname] = parameter
if 'filename' not in opt:
- print("No file specified!", file=sys.stderr)
+ print_error("No file specified!")
sys.exit(2)
else:
opt_filename = opt['filename']
@@ -352,15 +366,16 @@ if __name__ == '__main__':
# OPENING DATA
if ".json" in opt_filename:
# open file with trace data from json
- print("[INFO] Will only refine the state which is present in " + opt_filename + " if necessary.")
+ print_info(" Will only refine the state which is present in " + opt_filename + " if necessary.")
with open(opt_filename, 'r') as f:
states = json.load(f)
# loop through all traces check if refinement is necessary
- print("Checking if refinement is necessary...")
- res = False
+ print_info("Checking if refinement is necessary...")
for measurements_by_state in states:
# loop through all occurrences of the looked at state
- print("Looking at state '" + measurements_by_state['name'] + "'")
+ print_info("Looking at state '" + measurements_by_state['name'] + "' with params: "
+ + str(measurements_by_state['parameter']))
+ refine = False
for measurement in measurements_by_state['offline']:
# loop through measurements of particular state
# an check if state needs refinement
@@ -368,8 +383,65 @@ if __name__ == '__main__':
# mean = measurement['uW_mean']
# TODO: Decide if median is really the better baseline than mean
if needs_refinement(signal, opt_refinement_thresh):
- print("Refinement is necessary!")
+ print_info("Refinement is necessary!")
+ refine = True
break
+ if not refine:
+ print_info("No refinement necessary for state '" + measurements_by_state['name'] + "'")
+ else:
+ # calc and save all bkpts for the given state and param config
+ state_list = list()
+ for measurement in measurements_by_state['offline']:
+ signal = np.array(measurement['uW'])
+ normed_signal = np.zeros(shape=len(signal))
+ for i in range(0, len(signal)):
+ normed_signal[i] = signal[i] / 1000
+ bkpts = calc_pelt(normed_signal, model=opt_model, range_min=opt_range_min, range_max=opt_range_max,
+ num_processes=opt_num_processes, jump=opt_jump, S=opt_S,
+ pen_override=opt_pen_override)
+ calced_states = list()
+ start_time = 0
+ end_time = 0
+ for bkpt in bkpts:
+ # start_time of state is end_time of previous one(Transitions are instantaneous)
+ start_time = end_time
+ end_time = bkpt
+ power_vals = signal[start_time: end_time]
+ mean_power = np.mean(power_vals)
+ std_dev = np.std(power_vals)
+ calced_state = (start_time, end_time, mean_power, std_dev)
+ calced_states.append(calced_state)
+ num = 0
+ new_avg_std = 0
+ for s in calced_states:
+ print_info("State " + str(num) + " starts at t=" + str(s[0]) + " and ends at t=" + str(s[1])
+ + " while using " + str(s[2]) + "uW with sigma=" + str(s[3]))
+ num = num + 1
+ new_avg_std = new_avg_std + s[3]
+ new_avg_std = new_avg_std / len(calced_states)
+ change_avg_std = measurement['uW_std'] - new_avg_std
+ print_info("The average standard deviation for the newly found states is " + str(new_avg_std)
+ + ".\n[INFO]That is a reduction of " + str(change_avg_std))
+ state_list.append(calced_states)
+ num_states_array = np.zeros(shape=len(measurements_by_state['offline']))
+ i = 0
+ for x in state_list:
+ num_states_array[i] = len(x)
+ i = i + 1
+ avg_num_states = np.mean(num_states_array)
+ num_states_dev = np.std(num_states_array)
+ print_info("On average " + str(avg_num_states) + " States have been found. The standard deviation"
+ + " is " + str(num_states_dev))
+ # TODO: MAGIC NUMBER
+ if num_states_dev > 1:
+ print_warning("The number of states varies strongly across measurements. Consider choosing a "
+ "larger value for S.")
+ time.sleep(5)
+ # TODO: Wie bekomme ich da jetzt raus, was die Wahrheit ist?
+ # Einfach Durchschnitt nehmen?
+ # TODO: TESTING PURPOSES
+ exit()
+
elif ".tar" in opt_filename:
# open with dfatool
raw_data_args = list()
@@ -377,13 +449,13 @@ if __name__ == '__main__':
raw_data = RawData(
raw_data_args, with_traces=True
)
- print("Preprocessing file. Depending on its size, this could take a while.")
+ print_info("Preprocessing file. Depending on its size, this could take a while.")
preprocessed_data = raw_data.get_preprocessed_data()
- print("File fully preprocessed")
+ print_info("File fully preprocessed")
# TODO: Mal schauen, wie ich das mache. Erstmal nur mit json
else:
- print("Unknown dataformat", file=sys.stderr)
+ print_error("Unknown dataformat")
sys.exit(2)
# print(tx_data[1]['parameter'])