summaryrefslogtreecommitdiff
path: root/bin
diff options
context:
space:
mode:
Diffstat (limited to 'bin')
-rw-r--r--bin/Proof_Of_Concept_PELT.py98
1 files changed, 76 insertions, 22 deletions
diff --git a/bin/Proof_Of_Concept_PELT.py b/bin/Proof_Of_Concept_PELT.py
index dde99d8..0d5be54 100644
--- a/bin/Proof_Of_Concept_PELT.py
+++ b/bin/Proof_Of_Concept_PELT.py
@@ -504,17 +504,18 @@ if __name__ == '__main__':
if ".json" in opt_filename:
# open file with trace data from json
print_info(
- " Will only refine the state which is present in " + opt_filename + " if necessary.")
+ "Will only refine the state which is present in " + opt_filename + " if necessary.")
with open(opt_filename, 'r') as f:
- states = json.load(f)
+ configurations = json.load(f)
# loop through all traces check if refinement is necessary
- print_info("Checking if refinement is necessary...")
- for measurements_by_state in states:
+ resulting_sequence_list = []
+ for num_config, measurements_by_configuration in enumerate(configurations):
# loop through all occurrences of the looked at state
- print_info("Looking at state '" + measurements_by_state['name'] + "' with params: "
- + str(measurements_by_state['parameter']))
+ print_info("Looking at state '" + measurements_by_configuration['name'] + "' with params: "
+ + str(measurements_by_configuration['parameter']))
refine = False
- for measurement in measurements_by_state['offline']:
+ print_info("Checking if refinement is necessary...")
+ for measurement in measurements_by_configuration['offline']:
# loop through measurements of particular state
# an check if state needs refinement
signal = measurement['uW']
@@ -524,13 +525,13 @@ if __name__ == '__main__':
print_info("Refinement is necessary!")
refine = True
if not refine:
- print_info("No refinement necessary for state '" + measurements_by_state['name']
- + "' with params: " + str(measurements_by_state['parameter']))
+ print_info("No refinement necessary for state '" + measurements_by_configuration['name']
+ + "' with params: " + str(measurements_by_configuration['parameter']))
else:
# assume that all measurements of the same param configuration are fundamentally
# similar -> calculate penalty for first measurement, use it for all
if opt_pen_override is None:
- signal = np.array(measurements_by_state['offline'][0]['uW'])
+ signal = np.array(measurements_by_configuration['offline'][0]['uW'])
normed_signal = norm_signal(signal)
penalty = calculate_penalty_value(normed_signal, model=opt_model,
range_min=opt_range_min,
@@ -544,11 +545,11 @@ if __name__ == '__main__':
# build arguments for parallel excecution
print_info("Starting raw_states calculation.")
raw_states_calc_args = []
- for num_measurement, measurement in enumerate(measurements_by_state['offline']):
+ for num_measurement, measurement in enumerate(measurements_by_configuration['offline']):
raw_states_calc_args.append((num_measurement, measurement, penalty,
opt_model, opt_jump))
- raw_states_list = [None] * len(measurements_by_state['offline'])
+ raw_states_list = [None] * len(measurements_by_configuration['offline'])
raw_states_res = calc_raw_states(raw_states_calc_args, opt_num_processes)
# extracting result and putting it in correct order -> index of raw_states_list
# entry still corresponds with index of measurement in measurements_by_states
@@ -629,6 +630,7 @@ if __name__ == '__main__':
else:
print_info("Discarding measurement No. " + str(num_trace) + " because it "
+ "did not recognize the number of raw_states correctly.")
+ num_used_measurements = len(raw_states_list)
if i != len(raw_states_list):
if i / len(raw_states_list) <= 0.5:
print_warning("Only used " + str(i) + "/" + str(len(raw_states_list))
@@ -639,6 +641,7 @@ if __name__ == '__main__':
print_info("Used " + str(i) + "/" + str(len(raw_states_list))
+ " Measurements for refinement. "
"Others did not recognize number of states correctly.")
+ num_used_measurements = i
# TODO: DEBUG Kram
sys.exit(0)
else:
@@ -655,16 +658,24 @@ if __name__ == '__main__':
for num_label, label in enumerate(labels):
count_per_state[label] = count_per_state[label] + 1
avg_per_state[label] = avg_per_state[label] + raw_states[num_label][2]
- for i,_ in enumerate(avg_per_state):
+ for i, _ in enumerate(avg_per_state):
avg_per_state[i] = avg_per_state[i] / count_per_state[i]
avg_per_state_list[number] = avg_per_state
used_clusters = used_clusters + 1
-
+ else:
+ # hopefully this does not happen regularly
+ print_info("Discarding measurement " + str(number)
+ + " because the clustering yielded not matching results.")
+ num_used_measurements = num_used_measurements - 1
+ if num_used_measurements == 0:
+ print_error("Something went terribly wrong. Discarded all measurements.")
+ # continue
+ sys.exit(-1)
# flattend version for clustering:
values_to_cluster = np.zeros((num_states * used_clusters, 2))
index = 0
for avg_per_state in avg_per_state_list:
- if None not in avg_per_state:
+ if avg_per_state is not None:
for avg in avg_per_state:
values_to_cluster[index][0] = avg
values_to_cluster[index][1] = 0
@@ -673,30 +684,73 @@ if __name__ == '__main__':
# plt.show()
cluster = AgglomerativeClustering(n_clusters=num_states)
cluster.fit_predict(values_to_cluster)
- # HIER WEITER:
# Aktuell hast du hier ein plattes Array mit labels. Jetzt also das wieder auf die
# ursprünglichen Labels abbilden, die dann verändern mit den hier gefundenen Labels.
# Alle identischen Zustände haben identische Labels. Dann vllt bei resulting
# sequence ausgeben, wie groß die übereinstimmung bei der Stateabfolge ist.
-
+ new_labels_list = []
+ new_labels = []
+ i = 0
+ for label in cluster.labels_:
+ new_labels.append(label)
+ i = i + 1
+ if i == num_states:
+ new_labels_list.append(new_labels)
+ new_labels = []
+ i = 0
+ # only the selected measurements are present in new_labels.
+ # new_labels_index should not be incremented, if not selected_measurement is skipped
+ new_labels_index = 0
+ # cluster_labels_list contains all measurements -> if measurement is skipped
+ # still increment the index
+ index = 0
+ for elem in avg_per_state_list:
+ if elem is not None:
+ for number, label in enumerate(cluster_labels_list[index][1]):
+ cluster_labels_list[index][1][number] = \
+ new_labels_list[new_labels_index][label]
+ new_labels_index = new_labels_index + 1
+ else:
+ # override not selected measurement labels to avoid choosing the wrong ones.
+ for number, label in enumerate(cluster_labels_list[index][1]):
+ cluster_labels_list[index][1][number] = -1
+ index = index + 1
resulting_sequence = [None] * num_raw_states
i = 0
+ confidence = 0
for x in resulting_sequence:
j = 0
test_list = []
for arr in [elem[1] for elem in cluster_labels_list]:
if num_cluster_list[j][1] != num_states:
- # hopefully this does not happen regularly
- print_info("Discarding measurement " + str(j)
- + " because the clustering yielded not matching results.")
j = j + 1
else:
+ if -1 in arr:
+ print_error("Bei Janis beschweren! Fehler beim Umbenennen der"
+ " Zustände wahrscheinlich.")
+ sys.exit(-1)
test_list.append(arr[i])
j = j + 1
- resulting_sequence[i] = np.argmax(np.bincount(test_list))
+ bincount = np.bincount(test_list)
+ resulting_sequence[i] = np.argmax(bincount)
+ confidence = confidence + bincount[resulting_sequence[i]] / np.sum(bincount)
i = i + 1
+ confidence = confidence / len(resulting_sequence)
+ print_info("Confidence of resulting sequence is " + str(confidence)
+ + " while using " + str(num_used_measurements) + "/"
+ + str(len(raw_states_list)) + " measurements.")
print(resulting_sequence)
- sys.exit()
+ resulting_sequence_list.append((num_config, resulting_sequence))
+ # TODO: Was jetzt? Hier habe ich jetzt pro Konfiguration eine Zustandsfolge. Daraus Automat
+ # erzeugen. Aber wie? Oder erst parametrisieren? Eigentlich brauche ich vorher die
+ # Loops. Wie erkenne ich die? Es können beliebig viele Loops an beliebigen Stellen
+ # auftreten.
+ # TODO: Die Zustandsfolgen werden sich nicht einfach in isomorphe(-einzelne wegfallende bzw.
+ # hinzukommende Zustände) Automaten übersetzten lassen. Basiert alles auf dem Problem:
+ # wie erkenne ich, dass zwei Zustände die selben sind und nicht nur einfach eine ähnliche
+ # Leistungsaufnahme haben?! Vllt Zustände 2D clustern? 1Dim = Leistungsaufnahme,
+ # 2Dim=Dauer? Zumindest innerhalb einer Paramkonfiguration sollte sich die Dauer eines
+ # Zustands ja nicht mehr ändern.
elif ".tar" in opt_filename:
# open with dfatool