summaryrefslogtreecommitdiff
path: root/lib/dfatool.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/dfatool.py')
-rwxr-xr-xlib/dfatool.py14
1 files changed, 7 insertions, 7 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py
index dd8e288..76bf51a 100755
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -547,7 +547,7 @@ class analytic:
_num0_16 = np.vectorize(lambda x: 16 - bin(int(x)).count("1"))
_num1 = np.vectorize(lambda x: bin(int(x)).count("1"))
_safe_log = np.vectorize(lambda x: np.log(np.abs(x)) if np.abs(x) > 0.001 else 1.)
- _safe_frac = np.vectorize(lambda x: 1 / x if np.abs(x) > 0.001 else 1.)
+ _safe_inv = np.vectorize(lambda x: 1 / x if np.abs(x) > 0.001 else 1.)
_safe_sqrt = np.vectorize(lambda x: np.sqrt(np.abs(x)))
_function_map = {
@@ -556,13 +556,13 @@ class analytic:
'logarithmic1' : lambda x: np.log(x + 1),
'exponential' : np.exp,
'square' : lambda x : x ** 2,
- 'fractional' : lambda x : 1 / x,
+ 'inverse' : lambda x : 1 / x,
'sqrt' : np.sqrt,
'num0_8' : _num0_8,
'num0_16' : _num0_16,
'num1' : _num1,
'safe_log' : lambda x: np.log(np.abs(x)) if np.abs(x) > 0.001 else 1.,
- 'safe_frac' : lambda x: 1 / x if np.abs(x) > 0.001 else 1.,
+ 'safe_inv' : lambda x: 1 / x if np.abs(x) > 0.001 else 1.,
'safe_sqrt': lambda x: np.sqrt(np.abs(x)),
}
@@ -594,7 +594,7 @@ class analytic:
lambda model_param: True,
2
),
- 'fractional' : ParamFunction(
+ 'inverse' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] / model_param,
lambda model_param: model_param != 0,
2
@@ -627,8 +627,8 @@ class analytic:
lambda model_param: True,
2
)
- functions['safe_frac'] = ParamFunction(
- lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._safe_frac(model_param),
+ functions['safe_inv'] = ParamFunction(
+ lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._safe_inv(model_param),
lambda model_param: True,
2
)
@@ -654,7 +654,7 @@ class analytic:
return 'np.exp({})'.format(ref_str)
if function_type == 'square':
return '({})**2'.format(ref_str)
- if function_type == 'fractional':
+ if function_type == 'inverse':
return '1/({})'.format(ref_str)
if function_type == 'sqrt':
return 'np.sqrt({})'.format(ref_str)