diff options
Diffstat (limited to 'lib/loader/mimosa.py')
-rw-r--r-- | lib/loader/mimosa.py | 644 |
1 files changed, 644 insertions, 0 deletions
diff --git a/lib/loader/mimosa.py b/lib/loader/mimosa.py new file mode 100644 index 0000000..2893e30 --- /dev/null +++ b/lib/loader/mimosa.py @@ -0,0 +1,644 @@ +#!/usr/bin/env python3 + +import io +import logging +import numpy as np +import struct +import tarfile + +from dfatool.utils import soft_cast_int + +logger = logging.getLogger(__name__) + +arg_support_enabled = True + + +class MIMOSA: + """ + MIMOSA log loader for DFA traces with auto-calibration. + + Expects a MIMOSA log file generated via dfatool and a dfatool-generated + benchmark. A MIMOSA log consists of a series of measurements. Each measurement + gives the total charge (in pJ) and binary buzzer/trigger value during a 10µs interval. + + There must be a calibration run consisting of at least two seconds with disconnected DUT, + two seconds with 1 kOhm (984 Ohm), and two seconds with 100 kOhm (99013 Ohm) resistor at + the start. The first ten seconds of data are reserved for calbiration and must not contain + measurements, as trigger/buzzer signals are ignored in this time range. + + Resulting data is a list of state/transition/state/transition/... measurements. + """ + + def __init__(self, voltage: float, shunt: int, with_traces=False): + """ + Initialize MIMOSA loader for a specific voltage and shunt setting. + + :param voltage: MIMOSA DUT supply voltage (V) + :para mshunt: MIMOSA Shunt (Ohms) + """ + self.voltage = voltage + self.shunt = shunt + self.with_traces = with_traces + self.r1 = 984 # "1k" + self.r2 = 99013 # "100k" + self.errors = list() + + def charge_to_current_nocal(self, charge): + """ + Convert charge per 10µs (in pJ) to mean currents (in µA) without accounting for calibration. + + :param charge: numpy array of charges (pJ per 10µs) as returned by `load_data` or `load_file` + + :returns: numpy array of mean currents (µA per 10µs) + """ + ua_max = 1.836 / self.shunt * 1_000_000 + ua_step = ua_max / 65535 + return charge * ua_step + + def _state_is_too_short(self, online, offline, state_duration, next_transition): + # We cannot control when an interrupt causes a state to be left + if next_transition["plan"]["level"] == "epilogue": + return False + + # Note: state_duration is stored as ms, not us + return offline["us"] < state_duration * 500 + + def _state_is_too_long(self, online, offline, state_duration, prev_transition): + # If the previous state was left by an interrupt, we may have some + # waiting time left over. So it's okay if the current state is longer + # than expected. + if prev_transition["plan"]["level"] == "epilogue": + return False + # state_duration is stored as ms, not us + return offline["us"] > state_duration * 1500 + + def _load_tf(self, tf): + """ + Load MIMOSA log data from an open `tarfile` instance. + + :param tf: `tarfile` instance + + :returns: (numpy array of charges (pJ per 10µs), numpy array of triggers (0/1 int, per 10µs)) + """ + num_bytes = tf.getmember("/tmp/mimosa//mimosa_scale_1.tmp").size + charges = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int32) + triggers = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int8) + with tf.extractfile("/tmp/mimosa//mimosa_scale_1.tmp") as f: + content = f.read() + iterator = struct.iter_unpack("<I", content) + i = 0 + for word in iterator: + charges[i] = word[0] >> 4 + triggers[i] = (word[0] & 0x08) >> 3 + i += 1 + return charges, triggers + + def load_data(self, raw_data): + """ + Load MIMOSA log data from a MIMOSA log file passed as raw byte string + + :param raw_data: MIMOSA log file, passed as raw byte string + + :returns: (numpy array of charges (pJ per 10µs), numpy array of triggers (0/1 int, per 10µs)) + """ + with io.BytesIO(raw_data) as data_object: + with tarfile.open(fileobj=data_object) as tf: + return self._load_tf(tf) + + def load_file(self, filename): + """ + Load MIMOSA log data from a MIMOSA log file + + :param filename: MIMOSA log file + + :returns: (numpy array of charges (pJ per 10µs), numpy array of triggers (0/1 int, per 10µs)) + """ + with tarfile.open(filename) as tf: + return self._load_tf(tf) + + def currents_nocal(self, charges): + """ + Convert charges (pJ per 10µs) to mean currents without accounting for calibration. + + :param charges: numpy array of charges (pJ per 10µs) + + :returns: numpy array of currents (mean µA per 10µs)""" + ua_max = 1.836 / self.shunt * 1_000_000 + ua_step = ua_max / 65535 + return charges.astype(np.double) * ua_step + + def trigger_edges(self, triggers): + """ + Return indexes of trigger edges (both 0->1 and 1->0) in log data. + + Ignores the first 10 seconds, which are used for calibration and may + contain bogus triggers due to DUT resets. + + :param triggers: trigger array (int, 0/1) as returned by load_data + + :returns: list of int (trigger indices, e.g. [2000000, ...] means the first trigger appears in charges/currents interval 2000000 -> 20s after start of measurements. Keep in mind that each interval is 10µs long, not 1µs, so index values are not µs timestamps) + """ + trigidx = [] + + if len(triggers) < 1_000_000: + self.errors.append("MIMOSA log is too short") + return trigidx + + prevtrig = triggers[999_999] + + # if the first trigger is high (i.e., trigger/buzzer pin is active before the benchmark starts), + # something went wrong and are unable to determine when the first + # transition starts. + if prevtrig != 0: + self.errors.append( + "Unable to find start of first transition (log starts with trigger == {} != 0)".format( + prevtrig + ) + ) + + # if the last trigger is high (i.e., trigger/buzzer pin is active when the benchmark ends), + # it terminated in the middle of a transition -- meaning that it was not + # measured in its entirety. + if triggers[-1] != 0: + self.errors.append("Log ends during a transition".format(prevtrig)) + + # the device is reset for MIMOSA calibration in the first 10s and may + # send bogus interrupts -> bogus triggers + for i in range(1_000_000, triggers.shape[0]): + trig = triggers[i] + if trig != prevtrig: + # Due to MIMOSA's integrate-read-reset cycle, the charge/current + # interval belonging to this trigger comes two intervals (20µs) later + trigidx.append(i + 2) + prevtrig = trig + return trigidx + + def calibration_edges(self, currents): + """ + Return start/stop indexes of calibration measurements. + + :param currents: uncalibrated currents as reported by MIMOSA. For best results, + it may help to use a running mean, like so: + `currents = running_mean(currents_nocal(..., 10))` + + :returns: indices of calibration events in MIMOSA data: + (disconnect start, disconnect stop, R1 (1k) start, R1 (1k) stop, R2 (100k) start, R2 (100k) stop) + indices refer to charges/currents arrays, so 0 refers to the first 10µs interval, 1 to the second, and so on. + """ + r1idx = 0 + r2idx = 0 + ua_r1 = self.voltage / self.r1 * 1_000_000 + # first second may be bogus + for i in range(100_000, len(currents)): + if r1idx == 0 and currents[i] > ua_r1 * 0.6: + r1idx = i + elif ( + r1idx != 0 + and r2idx == 0 + and i > (r1idx + 180_000) + and currents[i] < ua_r1 * 0.4 + ): + r2idx = i + # 2s disconnected, 2s r1, 2s r2 with r1 < r2 -> ua_r1 > ua_r2 + # allow 5ms buffer in both directions to account for bouncing relais contacts + return ( + r1idx - 180_500, + r1idx - 500, + r1idx + 500, + r2idx - 500, + r2idx + 500, + r2idx + 180_500, + ) + + def calibration_function(self, charges, cal_edges): + """ + Calculate calibration function from previously determined calibration edges. + + :param charges: raw charges from MIMOSA + :param cal_edges: calibration edges as returned by calibration_edges + + :returns: (calibration_function, calibration_data): + calibration_function -- charge in pJ (float) -> current in uA (float). + Converts the amount of charge in a 10 µs interval to the + mean current during the same interval. + calibration_data -- dict containing the following keys: + edges -- calibration points in the log file, in µs + offset -- ... + offset2 -- ... + slope_low -- ... + slope_high -- ... + add_low -- ... + add_high -- .. + r0_err_uW -- mean error of uncalibrated data at "∞ Ohm" in µW + r0_std_uW -- standard deviation of uncalibrated data at "∞ Ohm" in µW + r1_err_uW -- mean error of uncalibrated data at 1 kOhm + r1_std_uW -- stddev at 1 kOhm + r2_err_uW -- mean error at 100 kOhm + r2_std_uW -- stddev at 100 kOhm + """ + dis_start, dis_end, r1_start, r1_end, r2_start, r2_end = cal_edges + if dis_start < 0: + dis_start = 0 + chg_r0 = charges[dis_start:dis_end] + chg_r1 = charges[r1_start:r1_end] + chg_r2 = charges[r2_start:r2_end] + cal_0_mean = np.mean(chg_r0) + cal_r1_mean = np.mean(chg_r1) + cal_r2_mean = np.mean(chg_r2) + + ua_r1 = self.voltage / self.r1 * 1_000_000 + ua_r2 = self.voltage / self.r2 * 1_000_000 + + if cal_r2_mean > cal_0_mean: + b_lower = (ua_r2 - 0) / (cal_r2_mean - cal_0_mean) + else: + logger.warning("0 uA == %.f uA during calibration" % (ua_r2)) + b_lower = 0 + + b_upper = (ua_r1 - ua_r2) / (cal_r1_mean - cal_r2_mean) + + a_lower = -b_lower * cal_0_mean + a_upper = -b_upper * cal_r2_mean + + if self.shunt == 680: + # R1 current is higher than shunt range -> only use R2 for calibration + def calfunc(charge): + if charge < cal_0_mean: + return 0 + else: + return charge * b_lower + a_lower + + else: + + def calfunc(charge): + if charge < cal_0_mean: + return 0 + if charge <= cal_r2_mean: + return charge * b_lower + a_lower + else: + return charge * b_upper + a_upper + ua_r2 + + caldata = { + "edges": [x * 10 for x in cal_edges], + "offset": cal_0_mean, + "offset2": cal_r2_mean, + "slope_low": b_lower, + "slope_high": b_upper, + "add_low": a_lower, + "add_high": a_upper, + "r0_err_uW": np.mean(self.currents_nocal(chg_r0)) * self.voltage, + "r0_std_uW": np.std(self.currents_nocal(chg_r0)) * self.voltage, + "r1_err_uW": (np.mean(self.currents_nocal(chg_r1)) - ua_r1) * self.voltage, + "r1_std_uW": np.std(self.currents_nocal(chg_r1)) * self.voltage, + "r2_err_uW": (np.mean(self.currents_nocal(chg_r2)) - ua_r2) * self.voltage, + "r2_std_uW": np.std(self.currents_nocal(chg_r2)) * self.voltage, + } + + # print("if charge < %f : return 0" % cal_0_mean) + # print("if charge <= %f : return charge * %f + %f" % (cal_r2_mean, b_lower, a_lower)) + # print("else : return charge * %f + %f + %f" % (b_upper, a_upper, ua_r2)) + + return calfunc, caldata + + def analyze_states(self, charges, trigidx, ua_func): + """ + Split log data into states and transitions and return duration, energy, and mean power for each element. + + :param charges: raw charges (each element describes the charge in pJ transferred during 10 µs) + :param trigidx: "charges" indexes corresponding to a trigger edge, see `trigger_edges` + :param ua_func: charge(pJ) -> current(µA) function as returned by `calibration_function` + + :returns: list of states and transitions, both starting andending with a state. + Each element is a dict containing: + * `isa`: 'state' or 'transition' + * `clip_rate`: range(0..1) Anteil an Clipping im Energieverbrauch + * `raw_mean`: Mittelwert der Rohwerte + * `raw_std`: Standardabweichung der Rohwerte + * `uW_mean`: Mittelwert der (kalibrierten) Leistungsaufnahme + * `uW_std`: Standardabweichung der (kalibrierten) Leistungsaufnahme + * `us`: Dauer + if isa == 'transition, it also contains: + * `timeout`: Dauer des vorherigen Zustands + * `uW_mean_delta_prev`: Differenz zwischen uW_mean und uW_mean des vorherigen Zustands + * `uW_mean_delta_next`: Differenz zwischen uW_mean und uW_mean des Folgezustands + if `self.with_traces` is true, it also contains: + * `plot`: (timestamps [s], power readings [W]) + """ + previdx = 0 + is_state = True + iterdata = [] + + # The last state (between the last transition and end of file) may also + # be important. Pretend it ends when the log ends. + trigger_indices = trigidx.copy() + trigger_indices.append(len(charges)) + + for idx in trigger_indices: + range_raw = charges[previdx:idx] + range_ua = ua_func(range_raw) + + isa = "state" + if not is_state: + isa = "transition" + + data = { + "isa": isa, + "clip_rate": np.mean(range_raw == 65535), + "raw_mean": np.mean(range_raw), + "raw_std": np.std(range_raw), + "uW_mean": np.mean(range_ua * self.voltage), + "uW_std": np.std(range_ua * self.voltage), + "us": (idx - previdx) * 10, + } + + if self.with_traces: + data["plot"] = ( + np.arange(len(range_ua)) * 1e-5, + range_ua * self.voltage * 1e-6, + ) + + if isa == "transition": + # subtract average power of previous state + # (that is, the state from which this transition originates) + data["uW_mean_delta_prev"] = data["uW_mean"] - iterdata[-1]["uW_mean"] + # placeholder to avoid extra cases in the analysis + data["uW_mean_delta_next"] = data["uW_mean"] + data["timeout"] = iterdata[-1]["us"] + elif len(iterdata) > 0: + # subtract average power of next state + # (the state into which this transition leads) + iterdata[-1]["uW_mean_delta_next"] = ( + iterdata[-1]["uW_mean"] - data["uW_mean"] + ) + + iterdata.append(data) + + previdx = idx + is_state = not is_state + return iterdata + + def validate(self, num_triggers, observed_trace, expected_traces, state_duration): + """ + Check if a dfatool v0 or v1 measurement is valid. + + processed_data layout: + 'fileno' : measurement['fileno'], + 'info' : measurement['info'], + 'triggers' : len(trigidx), + 'first_trig' : trigidx[0] * 10, + 'calibration' : caldata, + 'energy_trace' : mim.analyze_states(charges, trigidx, vcalfunc) + A sequence of unnamed, unparameterized states and transitions with + power and timing data + mim.analyze_states returns a list of (alternating) states and transitions. + Each element is a dict containing: + - isa: 'state' oder 'transition' + - clip_rate: range(0..1) Anteil an Clipping im Energieverbrauch + - raw_mean: Mittelwert der Rohwerte + - raw_std: Standardabweichung der Rohwerte + - uW_mean: Mittelwert der (kalibrierten) Leistungsaufnahme + - uW_std: Standardabweichung der (kalibrierten) Leistungsaufnahme + - us: Dauer + + Nur falls isa == 'transition': + - timeout: Dauer des vorherigen Zustands + - uW_mean_delta_prev: Differenz zwischen uW_mean und uW_mean des vorherigen Zustands + - uW_mean_delta_next: Differenz zwischen uW_mean und uW_mean des Folgezustands + """ + if len(self.errors): + return False + + # Check trigger count + sched_trigger_count = 0 + for run in expected_traces: + sched_trigger_count += len(run["trace"]) + if sched_trigger_count != num_triggers: + self.errors.append( + "got {got:d} trigger edges, expected {exp:d}".format( + got=num_triggers, exp=sched_trigger_count + ) + ) + return False + # Check state durations. Very short or long states can indicate a + # missed trigger signal which wasn't detected due to duplicate + # triggers elsewhere + online_datapoints = [] + for run_idx, run in enumerate(expected_traces): + for trace_part_idx in range(len(run["trace"])): + online_datapoints.append((run_idx, trace_part_idx)) + for offline_idx, (online_run_idx, online_trace_part_idx) in enumerate( + online_datapoints + ): + offline_trace_part = observed_trace[offline_idx] + online_trace_part = expected_traces[online_run_idx]["trace"][ + online_trace_part_idx + ] + + if online_trace_part["isa"] != offline_trace_part["isa"]: + self.errors.append( + "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) claims to be {off_isa:s}, but should be {on_isa:s}".format( + off_idx=offline_idx, + on_idx=online_run_idx, + on_sub=online_trace_part_idx, + on_name=online_trace_part["name"], + off_isa=offline_trace_part["isa"], + on_isa=online_trace_part["isa"], + ) + ) + return False + + # Clipping in UNINITIALIZED (offline_idx == 0) can happen during + # calibration and is handled by MIMOSA + if ( + offline_idx != 0 + and offline_trace_part["clip_rate"] != 0 + and not self.ignore_clipping + ): + self.errors.append( + "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) was clipping {clip:f}% of the time".format( + off_idx=offline_idx, + on_idx=online_run_idx, + on_sub=online_trace_part_idx, + on_name=online_trace_part["name"], + clip=offline_trace_part["clip_rate"] * 100, + ) + ) + return False + + if ( + online_trace_part["isa"] == "state" + and online_trace_part["name"] != "UNINITIALIZED" + and len(expected_traces[online_run_idx]["trace"]) + > online_trace_part_idx + 1 + ): + online_prev_transition = expected_traces[online_run_idx]["trace"][ + online_trace_part_idx - 1 + ] + online_next_transition = expected_traces[online_run_idx]["trace"][ + online_trace_part_idx + 1 + ] + try: + if self._state_is_too_short( + online_trace_part, + offline_trace_part, + state_duration, + online_next_transition, + ): + self.errors.append( + "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) is too short (duration = {dur:d} us)".format( + off_idx=offline_idx, + on_idx=online_run_idx, + on_sub=online_trace_part_idx, + on_name=online_trace_part["name"], + dur=offline_trace_part["us"], + ) + ) + return False + if self._state_is_too_long( + online_trace_part, + offline_trace_part, + state_duration, + online_prev_transition, + ): + self.errors.append( + "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) is too long (duration = {dur:d} us)".format( + off_idx=offline_idx, + on_idx=online_run_idx, + on_sub=online_trace_part_idx, + on_name=online_trace_part["name"], + dur=offline_trace_part["us"], + ) + ) + return False + except KeyError: + pass + # TODO es gibt next_transitions ohne 'plan' + return True + + @staticmethod + def add_offline_aggregates(online_traces, offline_trace, repeat_id): + # Edits online_traces[*]['trace'][*]['offline'] + # and online_traces[*]['trace'][*]['offline_aggregates'] in place + # (appends data from offline_trace) + # "offline_aggregates" is the only data used later on by model.py's by_name / by_param dicts + online_datapoints = [] + for run_idx, run in enumerate(online_traces): + for trace_part_idx in range(len(run["trace"])): + online_datapoints.append((run_idx, trace_part_idx)) + for offline_idx, (online_run_idx, online_trace_part_idx) in enumerate( + online_datapoints + ): + offline_trace_part = offline_trace[offline_idx] + online_trace_part = online_traces[online_run_idx]["trace"][ + online_trace_part_idx + ] + + if "offline" not in online_trace_part: + online_trace_part["offline"] = [offline_trace_part] + else: + online_trace_part["offline"].append(offline_trace_part) + + paramkeys = sorted(online_trace_part["parameter"].keys()) + + paramvalues = list() + + for paramkey in paramkeys: + if type(online_trace_part["parameter"][paramkey]) is list: + paramvalues.append( + soft_cast_int( + online_trace_part["parameter"][paramkey][repeat_id] + ) + ) + else: + paramvalues.append( + soft_cast_int(online_trace_part["parameter"][paramkey]) + ) + + # NB: Unscheduled transitions do not have an 'args' field set. + # However, they should only be caused by interrupts, and + # interrupts don't have args anyways. + if arg_support_enabled and "args" in online_trace_part: + paramvalues.extend(map(soft_cast_int, online_trace_part["args"])) + + # TODO rename offline_aggregates to make it clear that this is what ends up in by_name / by_param and model.py + if "offline_aggregates" not in online_trace_part: + online_trace_part["offline_attributes"] = [ + "power", + "duration", + "energy", + ] + # this is what ends up in by_name / by_param and is used by model.py + online_trace_part["offline_aggregates"] = { + "power": [], + "duration": [], + "power_std": [], + "energy": [], + "paramkeys": [], + "param": [], + } + if online_trace_part["isa"] == "transition": + online_trace_part["offline_attributes"].extend( + [ + "rel_energy_prev", + "rel_energy_next", + "rel_power_prev", + "rel_power_next", + "timeout", + ] + ) + online_trace_part["offline_aggregates"]["rel_energy_prev"] = [] + online_trace_part["offline_aggregates"]["rel_energy_next"] = [] + online_trace_part["offline_aggregates"]["rel_power_prev"] = [] + online_trace_part["offline_aggregates"]["rel_power_next"] = [] + online_trace_part["offline_aggregates"]["timeout"] = [] + if "plot" in offline_trace_part: + online_trace_part["offline_support"] = [ + "power_traces", + "timestamps", + ] + online_trace_part["offline_aggregates"]["power_traces"] = list() + online_trace_part["offline_aggregates"]["timestamps"] = list() + + # Note: All state/transitions are 20us "too long" due to injected + # active wait states. These are needed to work around MIMOSA's + # relatively low sample rate of 100 kHz (10us) and removed here. + online_trace_part["offline_aggregates"]["power"].append( + offline_trace_part["uW_mean"] + ) + online_trace_part["offline_aggregates"]["duration"].append( + offline_trace_part["us"] - 20 + ) + online_trace_part["offline_aggregates"]["power_std"].append( + offline_trace_part["uW_std"] + ) + online_trace_part["offline_aggregates"]["energy"].append( + offline_trace_part["uW_mean"] * (offline_trace_part["us"] - 20) + ) + online_trace_part["offline_aggregates"]["paramkeys"].append(paramkeys) + online_trace_part["offline_aggregates"]["param"].append(paramvalues) + if online_trace_part["isa"] == "transition": + online_trace_part["offline_aggregates"]["rel_energy_prev"].append( + offline_trace_part["uW_mean_delta_prev"] + * (offline_trace_part["us"] - 20) + ) + online_trace_part["offline_aggregates"]["rel_energy_next"].append( + offline_trace_part["uW_mean_delta_next"] + * (offline_trace_part["us"] - 20) + ) + online_trace_part["offline_aggregates"]["rel_power_prev"].append( + offline_trace_part["uW_mean_delta_prev"] + ) + online_trace_part["offline_aggregates"]["rel_power_next"].append( + offline_trace_part["uW_mean_delta_next"] + ) + online_trace_part["offline_aggregates"]["timeout"].append( + offline_trace_part["timeout"] + ) + + if "plot" in offline_trace_part: + online_trace_part["offline_aggregates"]["power_traces"].append( + offline_trace_part["plot"][1] + ) + online_trace_part["offline_aggregates"]["timestamps"].append( + offline_trace_part["plot"][0] + ) |