summaryrefslogtreecommitdiff
path: root/lib/model.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/model.py')
-rw-r--r--lib/model.py88
1 files changed, 74 insertions, 14 deletions
diff --git a/lib/model.py b/lib/model.py
index 58f05a4..4d1edd5 100644
--- a/lib/model.py
+++ b/lib/model.py
@@ -14,7 +14,14 @@ from .parameters import (
distinct_param_values,
)
from .paramfit import ParamFit
-from .utils import is_numeric, soft_cast_int, by_name_to_by_param, regression_measures
+from .utils import (
+ is_numeric,
+ soft_cast_int,
+ by_name_to_by_param,
+ by_param_to_by_name,
+ regression_measures,
+ param_eq_or_none,
+)
logger = logging.getLogger(__name__)
@@ -79,6 +86,7 @@ class AnalyticModel:
compute_stats=True,
force_tree=False,
max_std=None,
+ by_param=None,
from_json=None,
):
"""
@@ -96,7 +104,7 @@ class AnalyticModel:
- attributes: list of keys that should be analyzed,
e.g. ['power', 'duration']
- for each attribute mentioned in 'attributes': A list with measurements.
- All list except for 'attributes' must have the same length.
+ All lists except for 'attributes' must have the same length.
For example:
parameters = ['foo_count', 'irrelevant']
@@ -148,9 +156,18 @@ class AnalyticModel:
for name, name_data in from_json["name"].items():
self.attr_by_name[name] = dict()
for attr, attr_data in name_data.items():
- self.attr_by_name[name][attr] = ModelAttribute.from_json(
- name, attr, attr_data
- )
+ if by_param:
+ self.attr_by_name[name][attr] = ModelAttribute.from_json(
+ name,
+ attr,
+ attr_data,
+ data_values=by_name[name][attr],
+ param_values=by_name[name]["param"],
+ )
+ else:
+ self.attr_by_name[name][attr] = ModelAttribute.from_json(
+ name, attr, attr_data
+ )
self.fit_done = True
return
@@ -249,7 +266,7 @@ class AnalyticModel:
return static_model_getter
- def get_param_lut(self, use_mean=False, fallback=False):
+ def get_param_lut(self, use_mean=False, fallback=False, allow_none=False):
"""
Get parameter-look-up-table model function: name, attribute, parameter values -> model value.
@@ -279,7 +296,16 @@ class AnalyticModel:
try:
return lut_model[name][key][param]
except KeyError:
- if fallback:
+ if allow_none:
+ keys = filter(
+ lambda p: param_eq_or_none(param, p),
+ lut_model[name][key].keys(),
+ )
+ values = list(map(lambda p: lut_model[name][key][p], keys))
+ if not values:
+ raise
+ return np.mean(values)
+ elif fallback:
return static_model[name][key]
raise
params = kwargs["params"]
@@ -643,7 +669,14 @@ class AnalyticModel:
ret[f"xv/{name}/{attr_name}/{k}"] = np.mean(entry[k])
return ret
- def to_json(self, **kwargs) -> dict:
+ def to_json(
+ self,
+ with_by_param=False,
+ lut_error=None,
+ static_error=None,
+ model_error=None,
+ **kwargs,
+ ) -> dict:
"""
Return JSON encoding of this AnalyticModel.
"""
@@ -653,21 +686,48 @@ class AnalyticModel:
"paramValuesbyName": dict([[name, dict()] for name in self.names]),
}
+ if with_by_param:
+ by_param = self.get_by_param()
+ ret["byParam"] = list()
+ for k, v in by_param.items():
+ ret["byParam"].append((k, v))
+
for name in self.names:
for attr_name, attr in self.attr_by_name[name].items():
ret["name"][name][attr_name] = attr.to_json(**kwargs)
+ if lut_error:
+ ret["name"][name][attr_name]["lutError"] = lut_error[name][
+ attr_name
+ ]
+ if static_error:
+ ret["name"][name][attr_name]["staticError"] = static_error[name][
+ attr_name
+ ]
+ if model_error:
+ ret["name"][name][attr_name]["modelError"] = model_error[name][
+ attr_name
+ ]
attr_name = list(self.attributes(name))[0]
for param_name in self.parameters:
- ret["paramValuesbyName"][name][param_name] = self.attr_by_name[name][
- attr_name
- ].stats.distinct_values_by_param_name[param_name]
+ if self.attr_by_name[name][attr_name].stats is not None:
+ ret["paramValuesbyName"][name][param_name] = self.attr_by_name[
+ name
+ ][attr_name].stats.distinct_values_by_param_name[param_name]
return ret
@classmethod
- def from_json(cls, data, by_name, parameters):
- assert data["parameters"] == parameters
- return cls(by_name, parameters, from_json=data)
+ def from_json(cls, data, by_name=None, parameters=None):
+ if by_name is None and parameters is None:
+ assert data["byParam"] is not None
+ by_param = dict()
+ for (nk, pk), v in data["byParam"]:
+ by_param[(nk, tuple(pk))] = v
+ by_name = by_param_to_by_name(by_param)
+ return cls(by_name, data["parameters"], by_param=by_param, from_json=data)
+ else:
+ assert data["parameters"] == parameters
+ return cls(by_name, parameters, from_json=data)
def webconf_function_map(self) -> list:
ret = list()