summaryrefslogtreecommitdiff
path: root/lib/model.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/model.py')
-rw-r--r--lib/model.py70
1 files changed, 46 insertions, 24 deletions
diff --git a/lib/model.py b/lib/model.py
index e77db01..427b5ec 100644
--- a/lib/model.py
+++ b/lib/model.py
@@ -237,6 +237,8 @@ class AnalyticModel:
model[name][k] = v.get_static(use_mean=use_mean)
def static_model_getter(name, key, **kwargs):
+ if "params" in kwargs:
+ return [model[name][key] for p in kwargs["params"]]
return model[name][key]
return static_model_getter
@@ -266,18 +268,27 @@ class AnalyticModel:
for param, model_value in v.by_param.items():
lut_model[name][k][param] = v.get_lut(param, use_mean=use_mean)
- def lut_median_getter(name, key, param, arg=list(), **kwargs):
- if arg:
- if type(param) is tuple:
- param = list(param)
- param.extend(map(soft_cast_int, arg))
- param = tuple(param)
- try:
- return lut_model[name][key][param]
- except KeyError:
- if fallback:
- return static_model[name][key]
- raise
+ def lut_median_getter(name, key, **kwargs):
+ if "param" in kwargs:
+ param = tuple(kwargs["param"])
+ try:
+ return lut_model[name][key][param]
+ except KeyError:
+ if fallback:
+ return static_model[name][key]
+ raise
+ params = kwargs["params"]
+ if fallback:
+ return list(
+ map(
+ lambda p: lut_model[name][key][tuple(p)]
+ if tuple(p) in lut_model[name][key]
+ else static_model[name][key],
+ params,
+ )
+ )
+ else:
+ return list(map(lambda p: lut_model[name][key][tuple(p)], params))
return lut_median_getter
@@ -351,14 +362,32 @@ class AnalyticModel:
# shortcut
if type(model_info) is StaticFunction:
+ if "params" in kwargs:
+ return [static_model[name][key] for p in kwargs["params"]]
return static_model[name][key]
- if "arg" in kwargs and "param" in kwargs:
- kwargs["param"].extend(map(soft_cast_int, kwargs["arg"]))
-
- if model_function.is_predictable(kwargs["param"]):
+ if "param" in kwargs and model_function.is_predictable(kwargs["param"]):
return model_function.eval(kwargs["param"])
+ if "params" in kwargs:
+ if model_function.has_eval_arr and (
+ model_function.always_predictable
+ or all(
+ map(
+ lambda p: model_function.is_predictable(p), kwargs["params"]
+ )
+ )
+ ):
+ return model_function.eval_arr(kwargs["params"])
+ return list(
+ map(
+ lambda p: model_function.eval(p)
+ if model_function.is_predictable(p)
+ else static_model[name][key],
+ kwargs["params"],
+ )
+ )
+
return static_model[name][key]
def info_getter(name, key):
@@ -395,14 +424,7 @@ class AnalyticModel:
}
for attribute in elem["attributes"]:
predicted_data = np.array(
- list(
- map(
- lambda i: model_function(
- name, attribute, param=elem["param"][i]
- ),
- range(len(elem[attribute])),
- )
- )
+ model_function(name, attribute, params=elem["param"])
)
measures = regression_measures(predicted_data, elem[attribute])
detailed_results[name][attribute] = measures