summaryrefslogtreecommitdiff
path: root/lib/model.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/model.py')
-rw-r--r--lib/model.py63
1 files changed, 36 insertions, 27 deletions
diff --git a/lib/model.py b/lib/model.py
index c5908e3..9ac4560 100644
--- a/lib/model.py
+++ b/lib/model.py
@@ -353,6 +353,10 @@ class ModelAttribute:
self.function_override = None
self.param_model = None
+ def __repr__(self):
+ mean = np.mean(self.data)
+ return f"ModelAttribute<{self.name}, {self.attr}, mean={mean}>"
+
def get_static(self, use_mean=False):
if use_mean:
return np.mean(self.data)
@@ -517,6 +521,10 @@ class AnalyticModel:
self._compute_stats(by_name)
+ def __repr__(self):
+ names = ", ".join(self.by_name.keys())
+ return f"AnalyticModel<names=[{names}]>"
+
def _compute_stats(self, by_name):
paramstats = ParallelParamStats()
@@ -703,6 +711,12 @@ class AnalyticModel:
# TODO
pass
+ def predict(self, trace, with_fitted=True, wth_lut=False):
+ pass
+ # TODO trace= ( (name, duration), (name, duration), ...)
+ # -> Return predicted (duration, mean power, cumulative energy) for trace
+ # Achtung: Teilweise schon in der PTA-Klasse implementiert. Am besten diese mitbenutzen.
+
class PTAModel(AnalyticModel):
"""
@@ -783,6 +797,7 @@ class PTAModel(AnalyticModel):
self._use_corrcoef = use_corrcoef
self.traces = traces
self.function_override = function_override.copy()
+ self.submodel_by_nc = dict()
self.fit_done = False
@@ -791,6 +806,7 @@ class PTAModel(AnalyticModel):
self.pelt = PELT(**pelt)
self.find_substates()
+ print(self.submodel_by_nc)
else:
self.pelt = None
@@ -802,6 +818,11 @@ class PTAModel(AnalyticModel):
self.pta = pta
self.ignore_trace_indexes = ignore_trace_indexes
+ def __repr__(self):
+ states = ", ".join(self.states())
+ transitions = ", ".join(self.transitions())
+ return f"PTAModel<states=[{states}], transitions=[{transitions}]>"
+
def _aggregate_to_ndarray(self, aggregate):
for elem in aggregate.values():
for key in elem["attributes"]:
@@ -923,8 +944,6 @@ class PTAModel(AnalyticModel):
substate_counts_by_name[k[0]] = set()
substate_counts_by_name[k[0]].add(num_substates)
- print(substate_counts_by_name)
-
for name in self.names:
for substate_count in substate_counts_by_name[name]:
data = list()
@@ -961,40 +980,30 @@ class PTAModel(AnalyticModel):
# ...
def mk_submodel(self, name, substate_count, data):
paramstats = ParallelParamStats()
+ by_name = dict()
sub_states = list()
for substate_index in range(substate_count):
- sub_name = f"{name}.{substate_index}"
+ sub_name = f"{name}.{substate_index+1}({substate_count})"
durations = list()
powers = list()
param_values = list()
for param, run in data:
- durations.extend(run[substate_index]["duration"])
- powers.extend(run[substate_index]["power"])
+ # data units are s / W, models use µs / µW
+ durations.extend(np.array(run[substate_index]["duration"]) * 1e6)
+ powers.extend(np.array(run[substate_index]["power"]) * 1e6)
param_values.extend([param for i in run[substate_index]["duration"]])
- power_attr = ModelAttribute(
- sub_name, "power", powers, param_values, self.parameters, 0
- )
- duration_attr = ModelAttribute(
- sub_name, "duration", durations, param_values, self.parameters, 0
- )
- sub_states.append((duration_attr, power_attr))
- print(f"{sub_name} mean power: {power_attr.get_static()}")
- print(f"{sub_name} mean duration: {duration_attr.get_static()}")
- paramstats.enqueue((sub_name, "power"), power_attr)
- paramstats.enqueue((sub_name, "duration"), duration_attr)
- paramstats.compute()
+ by_name[sub_name] = {
+ "isa": "state",
+ "param": param_values,
+ "attributes": ["duration", "power"],
+ "duration": durations,
+ "power": powers,
+ }
- for substate_index in range(substate_count):
- sub_name = f"{name}.{substate_index}"
- duration_attr, power_attr = sub_states[substate_index]
- for param in self.parameters:
- print(
- f"{sub_name:16s} duration dependence on {param:15s}: {duration_attr.stats.param_dependence_ratio(param):.2f}"
- )
- print(
- f"{sub_name:16s} power dependence on {param:15s}: {power_attr.stats.param_dependence_ratio(param):.2f}"
- )
+ self.submodel_by_nc[(name, substate_count)] = PTAModel(
+ by_name, self.parameters, dict()
+ )
def get_substates(self):
states = self.states()