summaryrefslogtreecommitdiff
path: root/lib/parameters.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/parameters.py')
-rw-r--r--lib/parameters.py50
1 files changed, 27 insertions, 23 deletions
diff --git a/lib/parameters.py b/lib/parameters.py
index 1ae4e4c..bafc2a5 100644
--- a/lib/parameters.py
+++ b/lib/parameters.py
@@ -830,29 +830,6 @@ class ModelAttribute:
return False
return True
- def build_symreg_model(self):
- ignore_irrelevant = bool(
- int(os.getenv("DFATOOL_RMT_IGNORE_IRRELEVANT_PARAMS", "0"))
- )
- ignore_param_indexes = list()
- if ignore_irrelevant:
- for param_index, param in enumerate(self.param_names):
- if not self.stats.depends_on_param(param):
- ignore_param_indexes.append(param_index)
- x = df.SymbolicRegressionFunction(
- self.median,
- self.param_names,
- n_samples=self.data.shape[0],
- num_args=self.arg_count,
- )
- x.fit(self.param_values, self.data, ignore_param_indexes=ignore_param_indexes)
- if x.fit_success:
- self.model_function = x
- else:
- logger.debug(
- f"Symbolic Regression model generation for {self.name} {self.attr} failed."
- )
-
def fit_override_function(self):
function_str = self.function_override
x = df.AnalyticFunction(
@@ -986,6 +963,33 @@ class ModelAttribute:
)
return False
+ def build_symreg(self):
+ ignore_irrelevant = bool(
+ int(os.getenv("DFATOOL_RMT_IGNORE_IRRELEVANT_PARAMS", "0"))
+ )
+ ignore_param_indexes = list()
+ if ignore_irrelevant:
+ for param_index, param in enumerate(self.param_names):
+ if not self.stats.depends_on_param(param):
+ ignore_param_indexes.append(param_index)
+ x = df.SymbolicRegressionFunction(
+ np.mean(self.data),
+ n_samples=self.data.shape[0],
+ param_names=self.param_names,
+ arg_count=self.arg_count,
+ ).fit(self.param_values, self.data, ignore_param_indexes=ignore_param_indexes)
+ if x.fit_success:
+ self.model_function = x
+ return True
+ else:
+ logger.debug(
+ f"Symbolic Regression model generation for {self.name} {self.attr} failed."
+ )
+ self.model_function = df.StaticFunction(
+ np.mean(self.data), n_samples=len(self.data)
+ )
+ return False
+
def build_xgb(self):
mf = df.XGBoostFunction(
np.mean(self.data),