diff options
Diffstat (limited to 'lib')
-rwxr-xr-x | lib/dfatool.py | 98 |
1 files changed, 51 insertions, 47 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py index 5c55993..1dc5df5 100755 --- a/lib/dfatool.py +++ b/lib/dfatool.py @@ -283,6 +283,52 @@ def _preprocess_measurement(measurement): return processed_data +class ParamStats: + + def __init__(self, by_name, by_param, parameter_names, arg_count): + self.stats = dict() + # Note: This is deliberately single-threaded. The overhead incurred + # by multiprocessing is higher than the speed gained by parallel + # computation of statistics measures. + for state_or_tran in by_name.keys(): + self.stats[state_or_tran] = dict() + for attribute in by_name[state_or_tran]['attributes']: + self.stats[state_or_tran][attribute] = compute_param_statistics(by_name, by_param, parameter_names, arg_count, state_or_tran, attribute) + + def generic_param_independence_ratio(self, state_or_trans, attribute, use_corrcoef = False): + statistics = self.stats[state_or_trans][attribute] + if use_corrcoef: + # not supported + return 0 + if statistics['std_static'] == 0: + return 0 + return statistics['std_param_lut'] / statistics['std_static'] + + def generic_param_dependence_ratio(self, state_or_trans, attribute, use_corrcoef = False): + return 1 - self.generic_param_independence_ratio(state_or_trans, attribute, use_corrcoef) + + def param_independence_ratio(self, state_or_trans, attribute, param, use_corrcoef = False): + statistics = self.stats[state_or_trans][attribute] + if use_corrcoef: + return 1 - np.abs(statistics['corr_by_param'][param]) + if statistics['std_by_param'][param] == 0: + return 0 + return statistics['std_param_lut'] / statistics['std_by_param'][param] + + def param_dependence_ratio(self, state_or_trans, attribute, param, use_corrcoef = False): + return 1 - self.param_independence_ratio(state_or_trans, attribute, param, use_corrcoef) + + def arg_independence_ratio(self, state_or_trans, attribute, arg_index, use_corrcoef = False): + statistics = self.stats[state_or_trans][attribute] + if use_corrcoef: + return 1 - np.abs(statistics['corr_by_arg'][arg_index]) + if statistics['std_by_arg'][arg_index] == 0: + return 0 + return statistics['std_param_lut'] / statistics['std_by_arg'][arg_index] + + def arg_dependence_ratio(self, state_or_trans, attribute, arg_index, use_corrcoef = False): + return 1 - self.arg_independence_ratio(state_or_trans, attribute, arg_index, use_corrcoef) + class RawData: """ Loader for hardware model traces measured with MIMOSA. @@ -733,7 +779,6 @@ class EnergyModel: self.by_name = {} self.by_param = {} self.by_trace = {} - self.stats = {} self.cache = {} np.seterr('raise') self._parameter_names = sorted(self.traces[0]['trace'][0]['parameter'].keys()) @@ -782,20 +827,12 @@ class EnergyModel: def _compute_all_param_statistics(self): - # Note: This is deliberately single-threaded. The overhead incurred - # by multiprocessing is higher than the speed gained by parallel - # computation of statistics measures. - for state_or_trans in self.by_name.keys(): - self.stats[state_or_trans] = {} - for key in self.by_name[state_or_trans]['attributes']: - if key in self.by_name[state_or_trans]: - self.stats[state_or_trans][key] = compute_param_statistics(self.by_name, self.by_param, self._parameter_names, self._num_args, state_or_trans, key) + self.stats = ParamStats(self.by_name, self.by_param, self._parameter_names, self._num_args) @classmethod def from_model(self, model_data, parameter_names): self.by_name = {} self.by_param = {} - self.stats = {} np.seterr('raise') self._parameter_names = parameter_names for state_or_tran, values in model_data.items(): @@ -849,55 +886,22 @@ class EnergyModel: self._add_data_to_aggregate(self.by_name, elem['name'], elem) self._add_data_to_aggregate(self.by_param, (elem['name'], tuple(_elem_param_and_arg_list(elem))), elem) - def generic_param_independence_ratio(self, state_or_trans, key): - statistics = self.stats[state_or_trans][key] - if self._use_corrcoef: - return 0 - if statistics['std_static'] == 0: - return 0 - return statistics['std_param_lut'] / statistics['std_static'] - - def generic_param_dependence_ratio(self, state_or_trans, key): - return 1 - self.generic_param_independence_ratio(state_or_trans, key) - - def param_independence_ratio(self, state_or_trans, key, param): - statistics = self.stats[state_or_trans][key] - if self._use_corrcoef: - return 1 - np.abs(statistics['corr_by_param'][param]) - if statistics['std_by_param'][param] == 0: - return 0 - return statistics['std_param_lut'] / statistics['std_by_param'][param] - - def param_dependence_ratio(self, state_or_trans, key, param): - return 1 - self.param_independence_ratio(state_or_trans, key, param) - # This heuristic is very similar to the "function is not much better than # median" checks in get_fitted. So far, doing it here as well is mostly # a performance and not an algorithm quality decision. # --df, 2018-04-18 def depends_on_param(self, state_or_trans, key, param): if self._use_corrcoef: - return self.param_dependence_ratio(state_or_trans, key, param) > 0.1 + return self.stats.param_dependence_ratio(state_or_trans, key, param, self._use_corrcoef) > 0.1 else: - return self.param_dependence_ratio(state_or_trans, key, param) > 0.5 - - def arg_independence_ratio(self, state_or_trans, key, arg_index): - statistics = self.stats[state_or_trans][key] - if self._use_corrcoef: - return 1 - np.abs(statistics['corr_by_arg'][arg_index]) - if statistics['std_by_arg'][arg_index] == 0: - return 0 - return statistics['std_param_lut'] / statistics['std_by_arg'][arg_index] - - def arg_dependence_ratio(self, state_or_trans, key, arg_index): - return 1 - self.arg_independence_ratio(state_or_trans, key, arg_index) + return self.stats.param_dependence_ratio(state_or_trans, key, param, self._use_corrcoef) > 0.5 # See notes on depends_on_param def depends_on_arg(self, state_or_trans, key, param): if self._use_corrcoef: - return self.arg_dependence_ratio(state_or_trans, key, param) > 0.1 + return self.stats.arg_dependence_ratio(state_or_trans, key, param, self._use_corrcoef) > 0.1 else: - return self.arg_dependence_ratio(state_or_trans, key, param) > 0.5 + return self.stats.arg_dependence_ratio(state_or_trans, key, param, self._use_corrcoef) > 0.5 def _get_model_from_dict(self, model_dict, model_function): model = {} |