summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
Diffstat (limited to 'lib')
-rw-r--r--lib/functions.py22
-rw-r--r--lib/lennart/DataProcessor.py4
-rw-r--r--lib/loader/energytrace.py82
-rw-r--r--lib/loader/generic.py43
4 files changed, 73 insertions, 78 deletions
diff --git a/lib/functions.py b/lib/functions.py
index 5c2e8ff..33ecaca 100644
--- a/lib/functions.py
+++ b/lib/functions.py
@@ -153,6 +153,21 @@ class NormalizationFunction:
class ModelFunction:
+ """
+ Encapsulates the behaviour of a single model attribute, e.g. TX power or write duration.
+
+ The behaviour may be constant or depend on a number of factors. Modelfunction is a virtual base class,
+ individuel decendents describe actual behaviour.
+
+ Common attributes:
+ :param value: median data value
+ :type value: float
+ :param value_error: static model value error
+ :type value_error: dict, optional
+ :param function_error: model error
+ :type value_error: dict, optional
+ """
+
def __init__(self, value):
# a model always has a static (median/mean) value. For StaticFunction, it's the only data point.
# For more complex models, it's usede both as fallback in case the model cannot predict the current
@@ -171,11 +186,13 @@ class ModelFunction:
raise NotImplementedError
def eval_mae(self, param_list):
+ """Return model Mean Absolute Error (MAE) for `param_list`."""
if self.is_predictable(param_list):
return self.function_error["mae"]
return self.value_error["mae"]
def to_json(self):
+ """Convert model to JSON."""
ret = {
"value": self.value,
"valueError": self.value_error,
@@ -185,6 +202,11 @@ class ModelFunction:
@classmethod
def from_json(cls, data):
+ """
+ Create ModelFunction instance from JSON.
+
+ Delegates to StaticFunction, SplitFunction, etc. as appropriate.
+ """
if data["type"] == "static":
mf = StaticFunction.from_json(data)
elif data["type"] == "split":
diff --git a/lib/lennart/DataProcessor.py b/lib/lennart/DataProcessor.py
index 6df813e..c211beb 100644
--- a/lib/lennart/DataProcessor.py
+++ b/lib/lennart/DataProcessor.py
@@ -1,4 +1,6 @@
#!/usr/bin/env python3
+
+# XXX deprecated and unused
import numpy as np
import logging
import os
@@ -49,7 +51,7 @@ class DataProcessor:
# Remove bogus data before / after the measurement
- time_stamp_data = self.sync_data.timestamps
+ time_stamp_data = self.sync_data
for x in range(1, len(time_stamp_data)):
if time_stamp_data[x] - time_stamp_data[x - 1] > 1.3:
time_stamp_data = time_stamp_data[x:]
diff --git a/lib/loader/energytrace.py b/lib/loader/energytrace.py
index d7f3f88..0ffaac7 100644
--- a/lib/loader/energytrace.py
+++ b/lib/loader/energytrace.py
@@ -627,7 +627,7 @@ class EnergyTraceWithBarcode:
return None, None, None, None
-class EnergyTraceWithLogicAnalyzer:
+class EnergyTraceWithLogicAnalyzer(ExternalTimerSync):
def __init__(
self,
voltage: float,
@@ -650,12 +650,15 @@ class EnergyTraceWithLogicAnalyzer:
self.with_traces = with_traces
self.errors = list()
+ self.sync_min_duration = 0.7
+ self.sync_min_low_count = 3
+ self.sync_min_high_count = 1
+ self.sync_power = 0.011
+
def load_data(self, log_data):
- from dfatool.lennart.SigrokInterface import SigrokResult
- from dfatool.lennart.EnergyInterface import EnergyInterface
+ la_data = json.loads(log_data[0])
+ self.sync_data = la_data["timestamps"]
- # Daten laden
- self.sync_data = SigrokResult.fromString(log_data[0])
(
self.interval_start_timestamp,
self.interval_duration,
@@ -664,65 +667,26 @@ class EnergyTraceWithLogicAnalyzer:
self.hw_statechange_indexes,
) = _load_energytrace(log_data[1])
- def analyze_states(self, traces, offline_index: int):
- """
- Split log data into states and transitions and return duration, energy, and mean power for each element.
-
- :param traces: expected traces, needed to synchronize with the measurement.
- traces is a list of runs, traces[*]['trace'] is a single run
- (i.e. a list of states and transitions, starting with a transition
- and ending with a state).
- :param offline_index: This function uses traces[*]['trace'][*]['online_aggregates']['duration'][offline_index] to find sync codes
+ self.timestamps = self.interval_start_timestamp
+ self.data = self.interval_power
- :param charges: raw charges (each element describes the charge in pJ transferred during 10 µs)
- :param trigidx: "charges" indexes corresponding to a trigger edge, see `trigger_edges`
- :param ua_func: charge(pJ) -> current(µA) function as returned by `calibration_function`
+ for x in range(1, len(self.sync_data)):
+ if self.sync_data[x] - self.sync_data[x - 1] > 1.3:
+ self.sync_data = self.sync_data[x:]
+ break
- :returns: returns list of states and transitions, starting with a transition and ending with astate
- Each element is a dict containing:
- * `isa`: 'state' or 'transition'
- * `W_mean`: Mittelwert der Leistungsaufnahme
- * `W_std`: Standardabweichung der Leistungsaufnahme
- * `s`: Dauer
- if isa == 'transition, it also contains:
- * `W_mean_delta_prev`: Differenz zwischen W_mean und W_mean des vorherigen Zustands
- * `W_mean_delta_next`: Differenz zwischen W_mean und W_mean des Folgezustands
- """
+ for x in reversed(range(1, len(self.sync_data))):
+ if self.sync_data[x] - self.sync_data[x - 1] > 1.3:
+ self.sync_data = self.sync_data[:x]
+ break
- names = []
- for trace_number, trace in enumerate(traces):
- for state_or_transition in trace["trace"]:
- names.append(state_or_transition["name"])
- # print(names[:15])
- from dfatool.lennart.DataProcessor import DataProcessor
-
- dp = DataProcessor(
- sync_data=self.sync_data,
- et_timestamps=self.interval_start_timestamp,
- et_power=self.interval_power,
- hw_statechange_indexes=self.hw_statechange_indexes,
- offline_index=offline_index,
+ self.online_timestamps = self.sync_data[2:3] + self.sync_data[4:-7]
+ self.online_timestamps = (
+ np.array(self.online_timestamps) - self.online_timestamps[0]
)
- dp.run()
- energy_trace_new = dp.getStatesdfatool(
- state_sleep=self.state_duration, with_traces=self.with_traces
- )
- # Uncomment to plot traces
- if os.getenv("DFATOOL_PLOT_LASYNC") is not None and offline_index == int(
- os.getenv("DFATOOL_PLOT_LASYNC")
- ):
- dp.plot() # <- plot traces with sync annotatons
- # dp.plot(names) # <- plot annotated traces (with state/transition names)
- if os.getenv("DFATOOL_EXPORT_LASYNC") is not None:
- filename = os.getenv("DFATOOL_EXPORT_LASYNC") + f"_{offline_index}.json"
- with open(filename, "w") as f:
- json.dump(dp.export_sync(), f, cls=NpEncoder)
- logger.info("Exported data and LA sync timestamps to {filename}")
-
- energy_trace = list()
- expected_transitions = list()
- return energy_trace_new
+ def analyze_states(self, expected_trace, repeat_id):
+ return super().analyze_states(expected_trace, repeat_id, self.online_timestamps)
class EnergyTraceWithTimer(ExternalTimerSync):
diff --git a/lib/loader/generic.py b/lib/loader/generic.py
index 984cf06..78305e0 100644
--- a/lib/loader/generic.py
+++ b/lib/loader/generic.py
@@ -41,7 +41,10 @@ class ExternalTimerSync:
# * self.sync_min_high_count, self.sync_min_low_count: outlier handling in synchronization pulse detection
# * self.sync_power, self.sync_min_duration: synchronization pulse parameters. one pulse before the measurement, two pulses afterwards
# expected_trace must contain online timestamps
- def analyze_states(self, expected_trace, repeat_id):
+ def analyze_states(self, expected_trace, repeat_id, online_timestamps=None):
+ """
+ :param online_timestamps: must start at 0, if set
+ """
sync_start = None
sync_timestamps = list()
high_count = 0
@@ -81,24 +84,28 @@ class ExternalTimerSync:
start_ts = sync_timestamps[0][1]
end_ts = sync_timestamps[1][0]
- # start and end of first state
- online_timestamps = [0, expected_trace[0]["start_offset"][repeat_id]]
-
- # remaining events from the end of the first transition (start of second state) to the end of the last observed state
- try:
- for trace in expected_trace:
- for word in trace["trace"]:
- online_timestamps.append(
- online_timestamps[-1]
- + word["online_aggregates"]["duration"][repeat_id]
- )
- except IndexError:
- self.errors.append(
- f"""offline_index {repeat_id} missing in trace {trace["id"]}"""
- )
- return list()
+ if online_timestamps is None:
+ # start and end of first state
+ online_timestamps = [0, expected_trace[0]["start_offset"][repeat_id]]
+
+ # remaining events from the end of the first transition (start of second state) to the end of the last observed state
+ try:
+ for trace in expected_trace:
+ for word in trace["trace"]:
+ online_timestamps.append(
+ online_timestamps[-1]
+ + word["online_aggregates"]["duration"][repeat_id]
+ )
+ except IndexError:
+ self.errors.append(
+ f"""offline_index {repeat_id} missing in trace {trace["id"]}"""
+ )
+ return list()
+
+ online_timestamps = np.array(online_timestamps) * 1e-6
+ else:
+ online_timestamps = np.array(online_timestamps)
- online_timestamps = np.array(online_timestamps) * 1e-6
online_timestamps = (
online_timestamps
* ((end_ts - start_ts) / (online_timestamps[-1] - online_timestamps[0]))