summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
Diffstat (limited to 'lib')
-rw-r--r--lib/model.py163
1 files changed, 91 insertions, 72 deletions
diff --git a/lib/model.py b/lib/model.py
index 9765274..7f054f5 100644
--- a/lib/model.py
+++ b/lib/model.py
@@ -819,6 +819,12 @@ class PTAModel(AnalyticModel):
self._compute_stats(by_name)
+ if self.pelt is not None:
+ # cluster_substates alters submodel_by_name, so we cannot use its keys() iterator.
+ names_with_submodel = list(self.submodel_by_name.keys())
+ for name in names_with_submodel:
+ self.cluster_substates(name)
+
np.seterr("raise")
def __repr__(self):
@@ -1019,86 +1025,99 @@ class PTAModel(AnalyticModel):
if len(data):
self.mk_submodel(name, substate_counts, data)
- self.cluster_substates()
+ def cluster_substates(self, p_name):
+ from sklearn.cluster import AgglomerativeClustering
- def cluster_substates(self):
+ submodel = self.submodel_by_name[p_name]
# Für nicht parameterabhängige Teilzustände:
# - Dauer ± max(1%, 20µs) -> merge OK
# - Leistung ± max(5%, 10 µW) -> merge OK
# Besser in zwei Schritten oder besser gemeinsam? Das Problem ist, dass die distance_threshold nicht nach
# Dimensionen unterscheidet.
- for p_name, submodel in self.submodel_by_name.items():
- sub_attr_by_function = dict()
- static = submodel.get_static()
- param, param_info = submodel.get_fitted()
- for name in submodel.names:
- d_info = param_info(name, "duration")
- p_info = param_info(name, "power")
- if d_info:
- d_info = d_info["function"].model_function
- if p_info:
- p_info = p_info["function"].model_function
- key = (d_info, p_info)
- if key not in sub_attr_by_function:
- sub_attr_by_function[key] = list()
- sub_attr_by_function[key].append(name)
-
- print(sub_attr_by_function)
-
- if (None, None) in sub_attr_by_function:
- from sklearn.cluster import AgglomerativeClustering
-
- values_to_cluster = np.zeros(
- (len(sub_attr_by_function[(None, None)]), 1)
- )
- for i, name in enumerate(sub_attr_by_function[(None, None)]):
- values_to_cluster[i, 0] = static(name, "duration")
-
- cluster = AgglomerativeClustering(
- n_clusters=None,
- compute_full_tree=True,
- affinity="euclidean",
- linkage="ward",
- distance_threshold=50,
- )
- cluster.fit_predict(values_to_cluster)
- for i, name in enumerate(sub_attr_by_function[(None, None)]):
- print(i, cluster.labels_[i], values_to_cluster[i])
+ # Für parameterabhängige / allgemein: param_lut statt static nutzen.
+ # values_to_cluster[i, 0] = duration für paramvektor 1 (fallback static duration)
+ # values_to_cluster[i, 1] = duration für paramvektor 2 (fallback static duration)
+ # etc. -> wenn die lut für alle Parameter ähnlich ist, wird gemerged. Das funktioniert auch bei geringfügigen
+ # Schwankungen, die beim separaten Fitting zu unterschiedlichen Funktionen führen würden.
+ p_attr = self.attr_by_name[p_name]["power"]
+ p_params = list(set(map(tuple, p_attr.param_values)))
+ p_param_index = dict()
+ for i, p_param in enumerate(p_params):
+ p_param_index[p_param] = i
+ sub_attr_by_function = dict()
+ static = submodel.get_static()
+ lut = submodel.get_param_lut(fallback=True)
+ values_to_cluster = np.zeros((len(submodel.names), len(p_param_index)))
+ for i, name in enumerate(submodel.names):
+ for j, param in enumerate(p_params):
+ values_to_cluster[i, j] = lut(name, "duration", param=param)
+
+ clusters = list()
+
+ d_cluster = AgglomerativeClustering(
+ n_clusters=None,
+ compute_full_tree=True,
+ affinity="euclidean",
+ linkage="ward",
+ distance_threshold=50,
+ )
+ d_cluster.fit_predict(values_to_cluster)
+
+ for d_cluster_i in range(d_cluster.n_clusters_):
+ cl_substates = list()
+ for i, name in enumerate(submodel.names):
+ if d_cluster.labels_[i] == d_cluster_i:
+ cl_substates.append(name)
+ if len(cl_substates) == 1:
+ clusters.append(cl_substates)
+ continue
+ values_to_cluster = np.zeros((len(cl_substates), len(p_param_index)))
+ for i, name in enumerate(cl_substates):
+ for j, param in enumerate(p_params):
+ values_to_cluster[i, j] = lut(name, "power", param=param)
+ p_cluster = AgglomerativeClustering(
+ n_clusters=None,
+ compute_full_tree=True,
+ affinity="euclidean",
+ linkage="ward",
+ distance_threshold=500,
+ )
+ p_cluster.fit_predict(values_to_cluster)
+ for p_cluster_i in range(p_cluster.n_clusters_):
+ cluster = list()
+ for i, name in enumerate(cl_substates):
+ if p_cluster.labels_[i] == p_cluster_i:
+ cluster.append(name)
+ clusters.append(cluster)
- values_to_cluster = np.zeros(
- (len(sub_attr_by_function[(None, None)]), 1)
- )
- for i, name in enumerate(sub_attr_by_function[(None, None)]):
- values_to_cluster[i, 0] = static(name, "power")
-
- cluster = AgglomerativeClustering(
- n_clusters=None,
- compute_full_tree=True,
- affinity="euclidean",
- linkage="ward",
- distance_threshold=200,
+ logger.debug(f"sub-state clusters = {clusters}")
+
+ by_name = dict()
+ new_subname_by_old = dict()
+ for i, cluster in enumerate(clusters):
+ sub_name = f"{p_name}.{i}"
+ durations = list()
+ powers = list()
+ param_values = list()
+ for substate in cluster:
+ new_subname_by_old[substate] = sub_name
+ durations.extend(submodel.attr_by_name[substate]["duration"].data)
+ powers.extend(submodel.attr_by_name[substate]["power"].data)
+ param_values.extend(
+ submodel.attr_by_name[substate]["power"].param_values
)
- cluster.fit_predict(values_to_cluster)
- for i, name in enumerate(sub_attr_by_function[(None, None)]):
- print(i, cluster.labels_[i], values_to_cluster[i])
-
- # substate_counts = dict()
- # for k, (num_substates, _, substate_data) in substates_by_param.items():
- # if k[0] == name and num_substates > 1:
- # for datapoint in substates_by_param[k][2]:
- # for i, sc in enumerate(substates_by_param[k][0]):
- # if sc not in substate_counts:
- # substate_counts[sc] = list()
- # if sc > 1:
- # # substates_by_param[k][substate index]["power"] = [mean power of substate in first iteration, ...]
- # substate_counts[sc].append((k[1], substates_by_param[k][1][1][i], substates_by_param[k][1][2][i]))
- # for substate_count in substate_counts.keys():
- # self.mk_submodel(name, substate_count, substate_counts[substate_count])
-
- # TODO Für alle n>1 mit "Es gibt Parameterkombinationen mit n Teilzuständen":
- # Für jeden Teilzustand ein neues ModelAttribute erzeugen, das nur aus den
- # Teilzuständen von Parameterkombinationen mit n Teilzuständen erzeugt wird.
- # Dann diese jeweils fitten.
+ by_name[sub_name] = {
+ "isa": "state",
+ "param": param_values,
+ "attributes": ["duration", "power"],
+ "duration": durations,
+ "power": powers,
+ }
+ self.submodel_by_name[p_name] = PTAModel(by_name, self.parameters, dict())
+ for k in self.substate_sequence_by_nc.keys():
+ self.substate_sequence_by_nc[k] = list(
+ map(lambda x: new_subname_by_old[x], self.substate_sequence_by_nc[k])
+ )
# data[0] = [first sub-state, second sub-state, ...]
# data[1] = [first sub-state, second sub-state, ...]