1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
|
#!/usr/bin/env python3
"""
analyze-archive - generate PTA energy model from dfatool benchmark traces
analyze-archive generates a PTA energy model from one or more annotated
traces generated by dfatool. By default, it does nothing else.
Cross-Validation help:
If <method> is "montecarlo": Randomly divide data into 2/3 training and 1/3
validation, <count> times. Reported model quality is the average of all
validation runs. Data is partitioned without regard for parameter values,
so a specific parameter combination may be present in both training and
validation sets or just one of them.
If <method> is "kfold": Perform k-fold cross validation with k=<count>.
Divide data into 1-1/k training and 1/k validation, <count> times.
In the first set, items 0, k, 2k, ... ard used for validation, in the
second set, items 1, k+1, 2k+1, ... and so on.
validation, <count> times. Reported model quality is the average of all
validation runs. Data is partitioned without regard for parameter values,
so a specific parameter combination may be present in both training and
validation sets or just one of them.
Trace Export:
Each JSON file lists all occurences of the corresponding state/transition in the
benchmark's PTA trace. Each occurence contains the corresponding PTA
parameters (if any) in 'parameter' and measurement results in 'offline'.
As measurements are typically run repeatedly, 'offline' is in turn a list
of measurements: offline[0]['uW'] is the power trace of the first
measurement of this state/transition, offline[1]['uW'] corresponds t the
second measurement, etc. Values are provided in microwatts.
For example, TX.json[0].offline[0].uW corresponds to the first measurement
of the first TX state in the benchmark, and TX.json[5].offline[2].uW
corresponds to the third measurement of the sixth TX state in the benchmark.
WARNING: Several GB of RAM and disk space are required for complex measurements.
(JSON files may grow very large -- we trade efficiency for easy handling)
"""
import argparse
import json
import logging
import random
import re
import sys
import time
import dfatool.cli
import dfatool.utils
import dfatool.functions as df
from dfatool import plotter
from dfatool.loader import RawData, pta_trace_to_aggregate
from dfatool.model import PTAModel
from dfatool.validation import CrossValidator
from dfatool.automata import PTA
def print_model_quality(results):
for state_or_tran in results.keys():
print()
for key, result in results[state_or_tran].items():
if "smape" in result:
print(
"{:20s} {:15s} {:.2f}% / {:.0f}".format(
state_or_tran, key, result["smape"], result["mae"]
)
)
else:
print("{:20s} {:15s} {:.0f}".format(state_or_tran, key, result["mae"]))
def model_summary_table(result_list):
buf = "transition duration"
for results in result_list:
if len(buf):
buf += " ||| "
buf += dfatool.cli.format_quality_measures(results["duration_by_trace"])
print(buf)
buf = "total energy "
for results in result_list:
if len(buf):
buf += " ||| "
buf += dfatool.cli.format_quality_measures(results["energy_by_trace"])
print(buf)
buf = "rel total energy "
for results in result_list:
if len(buf):
buf += " ||| "
buf += dfatool.cli.format_quality_measures(results["rel_energy_by_trace"])
print(buf)
buf = "state-only energy "
for results in result_list:
if len(buf):
buf += " ||| "
buf += dfatool.cli.format_quality_measures(results["state_energy_by_trace"])
print(buf)
buf = "transition timeout "
for results in result_list:
if len(buf):
buf += " ||| "
buf += dfatool.cli.format_quality_measures(results["timeout_by_trace"])
print(buf)
def get_kconfig(model):
buf = str()
for param_name in model.parameters:
unique_values = set()
is_relevant = False
for name in model.names:
unique_values.update(
model.attr_by_name[name]["power"].stats.distinct_values_by_param_name[
param_name
]
)
for attr in model.attr_by_name[name].values():
# FIXME this indicates whether it might depend on the parameter, not whether it actually uses it (there's no API for that yet)
if attr.stats.depends_on_param(param_name):
is_relevant = True
unique_values.discard(None)
if not unique_values or not is_relevant:
# unused by the model
continue
buf += f"config {param_name}\n"
buf += f' prompt "{param_name}"\n'
if unique_values == {0, 1}:
buf += " bool\n"
elif all(map(dfatool.utils.is_numeric, unique_values)):
buf += " int\n"
buf += f" range {min(unique_values)} {max(unique_values)}\n"
else:
buf += " string\n"
buf += f" #!accept [{unique_values}]\n"
return buf
def plot_traces(preprocessed_data, sot_name):
traces = list()
timestamps = list()
for trace in preprocessed_data:
for state_or_transition in trace["trace"]:
if state_or_transition["name"] == sot_name:
timestamps.extend(
map(lambda x: x["plot"][0], state_or_transition["offline"])
)
traces.extend(
map(lambda x: x["plot"][1], state_or_transition["offline"])
)
if len(traces) == 0:
print(
f"""Did not find traces for state or transition {sot_name}. Abort.""",
file=sys.stderr,
)
sys.exit(2)
if len(traces) > 40:
print(f"""Truncating plot to 40 of {len(traces)} traces (random sample)""")
indexes = random.sample(range(len(traces)), 40)
timestamps = [timestamps[i] for i in indexes]
traces = [traces[i] for i in indexes]
plotter.plot_xy(
timestamps, traces, xlabel="t [s]", ylabel="P [W]", title=sot_name, family=True
)
if __name__ == "__main__":
ignored_trace_indexes = []
safe_functions_enabled = False
function_override = {}
show_quality = []
pta = None
energymodel_export_file = None
trace_export_dir = None
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter, description=__doc__
)
dfatool.cli.add_standard_arguments(parser)
parser.add_argument(
"--no-cache", action="store_true", help="Do not load cached measurement results"
)
parser.add_argument(
"--plot-traces",
metavar="NAME",
type=str,
help="Plot power trace for state or transition NAME. X axis is wrong for non-MIMOSA measurements",
)
parser.add_argument(
"--remove-outliers",
action="store_true",
help="Remove outliers exceeding the configured z score (default: 10)",
)
parser.add_argument(
"--z-score",
type=int,
default=10,
help="Configure z score for outlier detection (and optional removel)",
)
parser.add_argument(
"--show-quality",
choices=["overall", "summary"],
action="append",
default=list(),
help="summary: show static/fitted/lut SMAPE and MAE for each attribute, averaged over all states/transitions.",
)
parser.add_argument(
"--ignored-trace-indexes",
metavar="<i1,i2,...>",
type=str,
help="Specify traces which should be ignored due to bogus data. "
"1 is the first trace, 2 the second, and so on.",
)
parser.add_argument(
"--export-traces",
metavar="DIRECTORY",
type=str,
help="Export power traces of all states and transitions to DIRECTORY. "
"Creates a JSON file for each state and transition.",
)
parser.add_argument(
"--with-safe-functions",
action="store_true",
help="Include 'safe' functions (safe_log, safe_inv, safe_sqrt) which are also defined for 0 and -1. "
"This allows a greater range of functions to be tried during fitting.",
)
parser.add_argument(
"--hwmodel",
metavar="FILE",
type=str,
help="Load DFA hardware model from JSON or YAML FILE",
)
parser.add_argument(
"--export-pta-dot",
metavar="FILE",
type=str,
help="Export PTA representation suitable for Graphviz dot to FILE",
)
parser.add_argument(
"--export-energymodel",
metavar="FILE",
type=str,
help="Export JSON energy model to FILE. Works out of the box for v1+, requires --hwmodel for v0",
)
parser.add_argument(
"--export-webconf",
metavar="FILE",
type=str,
help="Export KConfig model to FILE.Kconfig and energy model to FILE.js. Works out of the box for v1+, requires --hwmodel for v0",
)
parser.add_argument(
"--with-substates",
metavar="PELT_CONFIG",
type=str,
help="Perform substate analysis",
)
parser.add_argument("measurement", nargs="+")
args = parser.parse_args()
dfatool.cli.sanity_check(args)
if args.log_level:
numeric_level = getattr(logging, args.log_level.upper(), None)
if not isinstance(numeric_level, int):
print(f"Invalid log level: {args.log_level}", file=sys.stderr)
sys.exit(1)
logging.basicConfig(level=numeric_level, format="%(asctime)s %(message)s")
if args.ignored_trace_indexes:
ignored_trace_indexes = list(map(int, args.ignored_trace_indexes.split(",")))
if 0 in ignored_trace_indexes:
logging.error("arguments to --ignored-trace-indexes start from 1")
if args.function_override:
for function_desc in args.function_override.split(";"):
state_or_tran, attribute, function_str = function_desc.split(":")
function_override[(state_or_tran, attribute)] = function_str
show_quality = args.show_quality
if args.filter_param:
args.filter_param = list(
map(lambda x: x.split("="), args.filter_param.split(","))
)
else:
args.filter_param = list()
if args.filter_observation:
args.filter_observation = list(
map(lambda x: tuple(x.split(":")), args.filter_observation.split(","))
)
if args.with_safe_functions is not None:
safe_functions_enabled = True
if args.hwmodel:
pta = PTA.from_file(args.hwmodel)
raw_data = RawData(
args.measurement,
with_traces=(
args.export_traces is not None
or args.plot_traces is not None
or args.with_substates is not None
),
skip_cache=args.no_cache,
)
if args.info:
print(" ".join(raw_data.filenames) + ":")
data_source = "???"
if raw_data.ptalog:
options = " --".join(
map(lambda kv: f"{kv[0]}={str(kv[1])}", raw_data.ptalog["opt"].items())
)
print(f" Options: --{options}")
if raw_data.version <= 1:
data_source = "MIMOSA"
elif raw_data.version == 2:
if raw_data.ptalog and "sync" in raw_data.ptalog["opt"]["energytrace"]:
data_source = "MSP430 EnergyTrace, sync={}".format(
raw_data.ptalog["opt"]["energytrace"]["sync"]
)
else:
data_source = "MSP430 EnergyTrace"
elif raw_data.version == 3:
data_source = "Keysight"
print(f" Data source ID: {raw_data.version} ({data_source})")
preprocessed_data = raw_data.get_preprocessed_data()
if args.info:
print(
f""" Valid Runs: {raw_data.preprocessing_stats["num_valid"]}/{raw_data.preprocessing_stats["num_runs"]}"""
)
state_durations = map(
lambda x: str(x["state_duration"]), raw_data.setup_by_fileno
)
print(f""" State Duration: {" / ".join(state_durations)} ms""")
if args.export_traces:
uw_per_sot = dict()
for trace in preprocessed_data:
for state_or_transition in trace["trace"]:
name = state_or_transition["name"]
if name not in uw_per_sot:
uw_per_sot[name] = list()
for elem in state_or_transition["offline"]:
elem["plot"] = list(elem["plot"])
uw_per_sot[name].append(state_or_transition)
for name, data in uw_per_sot.items():
target = f"{args.export_traces}/{name}.json"
print(f"exporting {target} ...")
with open(target, "w") as f:
json.dump(data, f, cls=dfatool.utils.NpEncoder)
if args.with_substates is not None:
arg_dict = dict()
if args.with_substates != "":
for kv in args.with_substates.split(","):
k, v = kv.split("=")
try:
arg_dict[k] = float(v)
except ValueError:
arg_dict[k] = v
args.with_substates = arg_dict
if args.plot_traces:
plot_traces(preprocessed_data, args.plot_traces)
if raw_data.preprocessing_stats["num_valid"] == 0:
print("No valid data available. Abort.", file=sys.stderr)
sys.exit(2)
if pta is None and raw_data.pta is not None:
pta = PTA.from_json(raw_data.pta)
by_name, parameters, arg_count = pta_trace_to_aggregate(
preprocessed_data, ignored_trace_indexes
)
if args.ignore_param:
args.ignore_param = args.ignore_param.split(",")
dfatool.utils.ignore_param(by_name, parameters, args.ignore_param)
dfatool.utils.filter_aggregate_by_param(by_name, parameters, args.filter_param)
dfatool.utils.filter_aggregate_by_observation(by_name, args.filter_observation)
if args.param_shift:
param_shift = dfatool.cli.parse_param_shift(args.param_shift)
dfatool.utils.shift_param_in_aggregate(by_name, parameters, param_shift)
if args.normalize_nfp:
norm = dfatool.cli.parse_nfp_normalization(args.normalize_nfp)
dfatool.utils.normalize_nfp_in_aggregate(by_name, norm)
dfatool.utils.detect_outliers_in_aggregate(
by_name, z_limit=args.z_score, remove_outliers=args.remove_outliers
)
constructor_start = time.time()
model = PTAModel(
by_name,
parameters,
arg_count,
traces=preprocessed_data,
function_override=function_override,
pta=pta,
pelt=args.with_substates,
force_tree=args.force_tree,
compute_stats=not args.skip_param_stats,
)
constructor_duration = time.time() - constructor_start
if args.info:
dfatool.cli.print_info_by_name(model, by_name)
if args.export_pgf_unparam:
dfatool.cli.export_pgf_unparam(model, args.export_pgf_unparam)
if args.export_json_unparam:
dfatool.cli.export_json_unparam(model, args.export_json_unparam)
if args.cross_validate:
xv_method, xv_count = args.cross_validate.split(":")
xv_count = int(xv_count)
xv = CrossValidator(
PTAModel,
by_name,
parameters,
arg_count,
force_tree=args.force_tree,
compute_stats=not args.skip_param_stats,
)
xv.parameter_aware = args.parameter_aware_cross_validation
else:
xv_method = None
xv_count = None
if args.plot_unparam:
for kv in args.plot_unparam.split(";"):
state_or_trans, attribute, ylabel = kv.split(":")
fname = "param_y_{}_{}.pdf".format(state_or_trans, attribute)
plotter.plot_y(
model.by_name[state_or_trans][attribute],
xlabel="measurement #",
ylabel=ylabel,
output=fname,
)
if args.boxplot_unparam:
plotter.boxplot(
model.names,
[model.by_name[name]["power"] for name in model.names],
xlabel="State/Transition",
ylabel="Average Power [µW]",
output=f"{args.boxplot_unparam}power.pdf",
)
plotter.boxplot(
model.transitions,
[model.by_name[name]["duration"] for name in model.transitions],
xlabel="Transition",
ylabel="Duration [µs]",
output=f"{args.boxplot_unparam}duration.pdf",
)
for name in model.names:
plotter.boxplot(
[name],
[model.by_name[name]["power"]],
xlabel="State/Transition",
ylabel="Average Power [µW]",
output=f"{args.boxplot_unparam}{name}-power.pdf",
)
for trans in model.transitions:
plotter.boxplot(
[trans],
[model.by_name[trans]["duration"]],
xlabel="Transition",
ylabel="duration [µs]",
output=f"{args.boxplot_unparam}{trans}-duration.pdf",
)
static_model = model.get_static()
if "static" in args.show_model or "all" in args.show_model:
print("--- simple static model ---")
for state in model.states:
for attribute in model.attributes(state):
dfatool.cli.print_static(
model,
static_model,
state,
attribute,
with_dependence="all" in args.show_model,
)
if args.with_substates:
for submodel in model.submodel_by_name.values():
for substate in submodel.states:
for subattribute in submodel.attributes(substate):
dfatool.cli.print_static(
submodel,
submodel.get_static(),
substate,
subattribut,
with_dependence="all" in args.show_model,
)
for trans in model.transitions:
if "energy" in model.attributes(trans):
try:
print(
"{:10s}: {:.0f} / {:.0f} / {:.0f} pJ ({:.2f} / {:.2f} / {:.2f})".format(
trans,
static_model(trans, "energy"),
static_model(trans, "rel_energy_prev"),
static_model(trans, "rel_energy_next"),
model.attr_by_name[trans][
"energy"
].stats.generic_param_dependence_ratio(),
model.attr_by_name[trans][
"rel_energy_prev"
].stats.generic_param_dependence_ratio(),
model.attr_by_name[trans][
"rel_energy_next"
].stats.generic_param_dependence_ratio(),
)
)
except KeyError:
print(
"{:10s}: {:.0f} pJ ({:.2f})".format(
trans,
static_model(trans, "energy"),
model.attr_by_name[trans][
"energy"
].stats.generic_param_dependence_ratio(),
)
)
else:
try:
print(
"{:10s}: {:.0f} / {:.0f} / {:.0f} pJ (E=P·t)".format(
trans,
static_model(trans, "power")
* static_model(trans, "duration"),
static_model(trans, "rel_power_prev")
* static_model(trans, "duration"),
static_model(trans, "rel_power_next")
* static_model(trans, "duration"),
)
)
except KeyError:
print(
"{:10s}: {:.0f} pJ (E=P·t)".format(
trans,
static_model(trans, "power")
* static_model(trans, "duration"),
)
)
print(
"{:10s}: {:.0f} µs ({:.2f})".format(
trans,
static_model(trans, "duration"),
model.attr_by_name[trans][
"duration"
].stats.generic_param_dependence_ratio(),
)
)
try:
print(
"{:10s}: {:.0f} / {:.0f} / {:.0f} µW ({:.2f} / {:.2f} / {:.2f})".format(
trans,
static_model(trans, "power"),
static_model(trans, "rel_power_prev"),
static_model(trans, "rel_power_next"),
model.attr_by_name[trans][
"power"
].stats.generic_param_dependence_ratio(),
model.attr_by_name[trans][
"rel_power_prev"
].stats.generic_param_dependence_ratio(),
model.attr_by_name[trans][
"rel_power_next"
].stats.generic_param_dependence_ratio(),
)
)
except KeyError:
print(
"{:10s}: {:.0f} pJ ({:.2f})".format(
trans,
static_model(trans, "power"),
model.attr_by_name[trans][
"power"
].stats.generic_param_dependence_ratio(),
)
)
if xv_method == "montecarlo":
static_quality, _ = xv.montecarlo(lambda m: m.get_static(), xv_count)
elif xv_method == "kfold":
static_quality, _ = xv.kfold(lambda m: m.get_static(), xv_count)
else:
static_quality = model.assess(static_model)
if len(args.show_model):
print("--- LUT ---")
lut_model = model.get_param_lut()
lut_quality = model.assess(lut_model)
if len(args.show_model):
print("--- param model ---")
# get_fitted_sub -> with sub-state detection and modeling
fit_start_time = time.time()
param_model, param_info = model.get_fitted(
safe_functions_enabled=safe_functions_enabled
)
fit_duration = time.time() - fit_start_time
if "paramdetection" in args.show_model or "all" in args.show_model:
for name in model.names:
for attribute in model.attributes(name):
info = param_info(name, attribute)
print(
"{:10s} {:10s} non-param stddev {:f}".format(
name,
attribute,
model.attr_by_name[name][attribute].stats.std_static,
)
)
print(
"{:10s} {:10s} param-lut stddev {:f}".format(
name,
attribute,
model.attr_by_name[name][attribute].stats.std_param_lut,
)
)
for param in sorted(
model.attr_by_name[name][attribute].stats.std_by_param.keys()
):
print(
"{:10s} {:10s} {:10s} stddev {:f}".format(
name,
attribute,
param,
model.attr_by_name[name][attribute].stats.std_by_param[
param
],
)
)
for arg_index in range(model.attr_by_name[name][attribute].arg_count):
print(
"{:10s} {:10s} {:10s} stddev {:f}".format(
name,
attribute,
f"arg{arg_index}",
model.attr_by_name[name][attribute].stats.std_by_arg[
arg_index
],
)
)
if type(info) is df.AnalyticFunction:
for param_name in sorted(info.fit_by_param.keys(), key=str):
param_fit = info.fit_by_param[param_name]["results"]
for function_type in sorted(param_fit.keys()):
function_rmsd = param_fit[function_type]["rmsd"]
print(
"{:10s} {:10s} {:10s} mean {:10s} RMSD {:.0f}".format(
name,
attribute,
str(param_name),
function_type,
function_rmsd,
)
)
if "param" in args.show_model or "all" in args.show_model:
for state in model.states:
for attribute in model.attributes(state):
info = param_info(state, attribute)
dfatool.cli.print_model(
f"{state:10s} {attribute:15s}", info, model.parameters
)
for trans in model.transitions:
for attribute in model.attributes(trans):
info = param_info(trans, attribute)
dfatool.cli.print_model(
f"{trans:10s} {attribute:15s}", info, model.parameters
)
if args.with_substates:
for submodel in model.submodel_by_name.values():
sub_param_model, sub_param_info = submodel.get_fitted()
for substate in submodel.states:
for subattribute in submodel.attributes(substate):
info = sub_param_info(substate, subattribute)
if type(info) is df.AnalyticFunction:
print(
"{:10s} {:15s}: {}".format(
substate, subattribute, info.model_function
)
)
print("{:10s} {:15s} {}".format("", "", info.model_args))
if args.with_substates:
for state in model.states:
if (
type(model.attr_by_name[state]["power"].model_function)
is df.SubstateFunction
):
# sub-state models need to know the duration of the state / transition. only needed for eval.
model.attr_by_name[state]["power"].model_function.static_duration = (
raw_data.setup_by_fileno[0]["state_duration"] * 1e3
)
if xv_method == "montecarlo":
xv.export_filename = args.export_xv
analytic_quality, xv_analytic_models = xv.montecarlo(
lambda m: m.get_fitted()[0], xv_count
)
elif xv_method == "kfold":
xv.export_filename = args.export_xv
analytic_quality, xv_analytic_models = xv.kfold(
lambda m: m.get_fitted()[0], xv_count
)
else:
if args.export_raw_predictions:
analytic_quality, raw_results = model.assess(param_model, return_raw=True)
with open(args.export_raw_predictions, "w") as f:
json.dump(raw_results, f, cls=dfatool.utils.NpEncoder)
else:
analytic_quality = model.assess(param_model)
xv_analytic_models = None
if args.show_model_error:
dfatool.cli.model_quality_table(
lut=lut_quality,
model=analytic_quality,
static=static_quality,
model_info=param_info,
xv_method=xv_method,
xv_count=xv_count,
error_metric=args.error_metric,
)
if args.with_substates:
for submodel in model.submodel_by_name.values():
sub_static_model = submodel.get_static()
sub_static_quality = submodel.assess(sub_static_model)
sub_lut_model = submodel.get_param_lut()
sub_lut_quality = submodel.assess(sub_lut_model)
sub_param_model, sub_param_info = submodel.get_fitted()
sub_analytic_quality = submodel.assess(sub_param_model)
dfatool.cli.model_quality_table(
lut=sub_lut_quality,
model=sub_analytic_quality,
static=sub_static_quality,
model_info=sub_param_info,
error_metric=args.error_metric,
)
if "overall" in show_quality or "all" in show_quality:
print("overall state static/param/lut MAE assuming equal state distribution:")
print(
" {:6.1f} / {:6.1f} / {:6.1f} µW".format(
model.assess_states(static_model),
model.assess_states(param_model),
model.assess_states(lut_model),
)
)
distrib = dict()
num_states = len(model.states)
p95_state = None
for state in model.states:
distrib[state] = 1.0 / num_states
if "STANDBY1" in model.states:
p95_state = "STANDBY1"
elif "SLEEP" in model.states:
p95_state = "SLEEP"
if p95_state is not None:
for state in distrib.keys():
distrib[state] = 0.05 / (num_states - 1)
distrib[p95_state] = 0.95
print(f"overall state static/param/lut MAE assuming 95% {p95_state}:")
print(
" {:6.1f} / {:6.1f} / {:6.1f} µW".format(
model.assess_states(static_model, distribution=distrib),
model.assess_states(param_model, distribution=distrib),
model.assess_states(lut_model, distribution=distrib),
)
)
if "summary" in show_quality or "all" in show_quality:
model_summary_table(
[
model.assess_on_traces(static_model),
model.assess_on_traces(param_model),
model.assess_on_traces(lut_model),
]
)
if args.show_model_complexity:
dfatool.cli.print_model_complexity(model)
if args.boxplot_param:
dfatool.cli.boxplot_param(args, model)
if args.plot_param:
for kv in args.plot_param.split(";"):
try:
state_or_trans, attribute, param_name, *function = kv.split(":")
except ValueError:
print(
"Usage: --plot-param='state_or_trans attribute param_name [additional function spec]'",
file=sys.stderr,
)
sys.exit(1)
if len(function):
function = df.gplearn_to_function(" ".join(function))
else:
function = None
plotter.plot_param(
model,
state_or_trans,
attribute,
model.param_index(param_name),
extra_function=function,
output=f"{state_or_trans}-{attribute}-{param_name}.pdf",
show=not args.non_interactive,
)
if args.export_dref:
dref = raw_data.to_dref()
dref.update(
model.to_dref(
static_quality,
lut_quality,
analytic_quality,
xv_models=xv_analytic_models,
)
)
dref["constructor duration"] = (constructor_duration, r"\second")
dref["regression duration"] = (fit_duration, r"\second")
dfatool.cli.export_dataref(
args.export_dref, dref, precision=args.dref_precision
)
if args.export_json:
with open(args.export_json, "w") as f:
json.dump(model.to_json(), f, sort_keys=True, cls=dfatool.utils.NpEncoder)
if args.export_webconf:
if not pta:
print(
"Note: v0 measurements do not embed the PTA used for benchmark generation. Estimating PTA from recorded observations."
)
json_model = model.to_json()
json_model_str = json.dumps(
json_model, indent=2, sort_keys=True, cls=dfatool.utils.NpEncoder
)
for function_str, function_body in model.webconf_function_map():
json_model_str = json_model_str.replace(function_str, function_body)
buf = "class watModel {\n"
buf += f"model = {json_model_str};\n"
buf += "};"
with open(f"{args.export_webconf}.js", "w") as f:
f.write(buf)
with open(f"{args.export_webconf}.kconfig", "w") as f:
f.write(get_kconfig(model))
if args.export_energymodel:
if not pta:
print(
"Note: v0 measurements do not embed the PTA used for benchmark generation. Estimating PTA from recorded observations."
)
json_model = model.to_json()
with open(args.export_energymodel, "w") as f:
json.dump(
json_model, f, indent=2, sort_keys=True, cls=dfatool.utils.NpEncoder
)
if args.export_dot:
dfatool.cli.export_dot(model, args.export_dot)
if args.export_pta_dot:
if not pta:
print(
"Note: v0 measurements do not embed the PTA used for benchmark generation. Estimating PTA from recorded observations."
)
json_model = model.to_json()
with open(args.export_pta_dot, "w") as f:
f.write(model.to_dot())
sys.exit(0)
|