summaryrefslogtreecommitdiff
path: root/bin/analyze-config.py
blob: 56a27167f3998b00a9e5751c24cf8efc5dfdcbc1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#!/usr/bin/env python3

import json
import kconfiglib
import logging
import os

import numpy as np

numeric_level = getattr(logging, "DEBUG", None)
if not isinstance(numeric_level, int):
    print(f"Invalid log level: {loglevel}", file=sys.stderr)
    sys.exit(1)
logging.basicConfig(level=numeric_level)

kconfig_path = "/tmp/multipass/Kconfig"
configs_base = "/tmp/multipass-model"

experiments = list()

for direntry in os.listdir(configs_base):
    if "Multipass-" in direntry:
        config_path = f"{configs_base}/{direntry}/.config"
        attr_path = f"{configs_base}/{direntry}/attributes.json"
        if os.path.exists(attr_path):
            experiments.append((config_path, attr_path))

kconf = kconfiglib.Kconfig(kconfig_path)

symbols = sorted(
    map(
        lambda sym: sym.name,
        filter(
            lambda sym: kconfiglib.TYPE_TO_STR[sym.type] == "bool", kconf.syms.values()
        ),
    )
)

by_name = {
    "multipass": {
        "isa": "state",
        "attributes": ["rom_usage", "ram_usage"],
        "rom_usage": list(),
        "ram_usage": list(),
        "param": list(),
    }
}
data = list()

config_vectors = set()

for config_path, attr_path in experiments:
    kconf.load_config(config_path)
    with open(attr_path, "r") as f:
        attr = json.load(f)

    config_vector = tuple(map(lambda sym: kconf.syms[sym].tri_value == 2, symbols))
    config_vectors.add(config_vector)
    by_name["multipass"]["rom_usage"].append(attr["total"]["ROM"])
    by_name["multipass"]["ram_usage"].append(attr["total"]["RAM"])
    by_name["multipass"]["param"].append(config_vector)
    data.append((config_vector, attr["total"]["ROM"], attr["total"]["RAM"]))

print(
    "Processing {:d} unique configurations of {:d} total".format(
        len(config_vectors), len(experiments)
    )
)

print("std of all data: {:5.0f} Bytes".format(np.std(list(map(lambda x: x[1], data)))))


class DTreeLeaf:
    def __init__(self, value, stddev):
        self.value = value
        self.stddev = stddev

    def __repr__(self):
        return f"<DTreeLeaf({self.value}, {self.stddev})>"

    def to_json(self):
        return {"value": self.value, "stddev": self.stddev}


class DTreeNode:
    def __init__(self, symbol):
        self.symbol = symbol
        self.false_child = None
        self.true_child = None

    def set_false_child(self, child_node):
        self.false_child = child_node

    def set_true_child(self, child_node):
        self.true_child = child_node

    def __repr__(self):
        return f"<DTreeNode({self.false_child}, {self.true_child})>"

    def to_json(self):
        ret = {"symbol": self.symbol}
        if self.false_child:
            ret["false"] = self.false_child.to_json()
        else:
            ret["false"] = None
        if self.true_child:
            ret["true"] = self.true_child.to_json()
        else:
            ret["true"] = None
        return ret


def get_min(this_symbols, this_data, level):

    rom_sizes = list(map(lambda x: x[1], this_data))

    if np.std(rom_sizes) < 100 or len(this_symbols) == 0:
        return DTreeLeaf(np.mean(rom_sizes), np.std(rom_sizes))

    mean_stds = list()
    for i, param in enumerate(this_symbols):
        enabled = list(filter(lambda vrr: vrr[0][i] == True, this_data))
        disabled = list(filter(lambda vrr: vrr[0][i] == False, this_data))

        enabled_std_rom = np.std(list(map(lambda x: x[1], enabled)))
        disabled_std_rom = np.std(list(map(lambda x: x[1], disabled)))
        children = [enabled_std_rom, disabled_std_rom]

        if np.any(np.isnan(children)):
            mean_stds.append(np.inf)
        else:
            mean_stds.append(np.mean(children))

    symbol_index = np.argmin(mean_stds)
    symbol = this_symbols[symbol_index]
    enabled = list(filter(lambda vrr: vrr[0][symbol_index] == True, this_data))
    disabled = list(filter(lambda vrr: vrr[0][symbol_index] == False, this_data))

    node = DTreeNode(symbol)

    new_symbols = this_symbols[:symbol_index] + this_symbols[symbol_index + 1 :]
    enabled = list(
        map(lambda x: (x[0][:symbol_index] + x[0][symbol_index + 1 :], *x[1:]), enabled)
    )
    disabled = list(
        map(
            lambda x: (x[0][:symbol_index] + x[0][symbol_index + 1 :], *x[1:]), disabled
        )
    )
    print(
        f"Level {level} split on {symbol} has {len(enabled)} children when enabled and {len(disabled)} children when disabled"
    )
    if len(enabled):
        node.set_true_child(get_min(new_symbols, enabled, level + 1))
    if len(disabled):
        node.set_false_child(get_min(new_symbols, disabled, level + 1))

    return node


model = get_min(symbols, data, 0)

output = {"model": model.to_json(), "symbols": symbols}

with open("kconfigmodel.json", "w") as f:
    json.dump(output, f)