1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
|
#!/usr/bin/env python3
"""
analyze-config - generate NFP model from system config benchmarks
analyze-config generates an NFP model from benchmarks with various system
configs (.config entries generated from a common Kconfig definition). The
NFP model is not yet compatible with the type of models generated
by analyze-archive and analyze-timing
"""
import argparse
import json
import kconfiglib
import logging
import os
import numpy as np
from dfatool.functions import SplitFunction, StaticFunction
from dfatool.model import AnalyticModel
from dfatool.utils import NpEncoder
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter, description=__doc__
)
parser.add_argument(
"--log-level",
metavar="LEVEL",
choices=["debug", "info", "warning", "error"],
default="warning",
help="Set log level",
)
parser.add_argument("kconfig_file")
parser.add_argument("data_dir")
args = parser.parse_args()
if args.log_level:
numeric_level = getattr(logging, args.log_level.upper(), None)
if not isinstance(numeric_level, int):
print(f"Invalid log level: {args.log_level}", file=sys.stderr)
sys.exit(1)
logging.basicConfig(level=numeric_level)
experiments = list()
for direntry in os.listdir(args.data_dir):
if "Multipass" in direntry:
config_path = f"{args.data_dir}/{direntry}/.config"
attr_path = f"{args.data_dir}/{direntry}/attributes.json"
if os.path.exists(attr_path):
experiments.append((config_path, attr_path))
kconf = kconfiglib.Kconfig(args.kconfig_file)
symbols = sorted(
map(
lambda sym: sym.name,
filter(
lambda sym: kconfiglib.TYPE_TO_STR[sym.type] == "bool",
kconf.syms.values(),
),
)
)
by_name = {
"multipass": {
"isa": "state",
"attributes": ["rom_usage", "ram_usage"],
"rom_usage": list(),
"ram_usage": list(),
"param": list(),
}
}
data = list()
config_vectors = set()
for config_path, attr_path in experiments:
kconf.load_config(config_path)
with open(attr_path, "r") as f:
attr = json.load(f)
config_vector = tuple(map(lambda sym: kconf.syms[sym].tri_value == 2, symbols))
config_vectors.add(config_vector)
by_name["multipass"]["rom_usage"].append(attr["total"]["ROM"])
by_name["multipass"]["ram_usage"].append(attr["total"]["RAM"])
by_name["multipass"]["param"].append(config_vector)
data.append((config_vector, attr["total"]["ROM"], attr["total"]["RAM"]))
print(
"Processing {:d} unique configurations of {:d} total".format(
len(config_vectors), len(experiments)
)
)
print(
"std of all data: {:5.0f} Bytes".format(np.std(list(map(lambda x: x[1], data))))
)
model = AnalyticModel(by_name, symbols, compute_stats=False)
def get_min(this_symbols, this_data, level):
rom_sizes = list(map(lambda x: x[1], this_data))
if np.std(rom_sizes) < 100 or len(this_symbols) == 0:
return StaticFunction(np.mean(rom_sizes))
# sf.value_error["std"] = np.std(rom_sizes)
mean_stds = list()
for i, param in enumerate(this_symbols):
enabled = list(filter(lambda vrr: vrr[0][i] == True, this_data))
disabled = list(filter(lambda vrr: vrr[0][i] == False, this_data))
enabled_std_rom = np.std(list(map(lambda x: x[1], enabled)))
disabled_std_rom = np.std(list(map(lambda x: x[1], disabled)))
children = [enabled_std_rom, disabled_std_rom]
if np.any(np.isnan(children)):
mean_stds.append(np.inf)
else:
mean_stds.append(np.mean(children))
symbol_index = np.argmin(mean_stds)
symbol = this_symbols[symbol_index]
enabled = list(filter(lambda vrr: vrr[0][symbol_index] == True, this_data))
disabled = list(filter(lambda vrr: vrr[0][symbol_index] == False, this_data))
child = dict()
new_symbols = this_symbols[:symbol_index] + this_symbols[symbol_index + 1 :]
enabled = list(
map(
lambda x: (x[0][:symbol_index] + x[0][symbol_index + 1 :], *x[1:]),
enabled,
)
)
disabled = list(
map(
lambda x: (x[0][:symbol_index] + x[0][symbol_index + 1 :], *x[1:]),
disabled,
)
)
print(
f"Level {level} split on {symbol} has {len(enabled)} children when enabled and {len(disabled)} children when disabled"
)
if len(enabled):
child[1] = get_min(new_symbols, enabled, level + 1)
if len(disabled):
child[0] = get_min(new_symbols, disabled, level + 1)
return SplitFunction(np.mean(rom_sizes), symbol_index, child)
model = get_min(symbols, data, 0)
output = {"model": model.to_json(), "symbols": symbols}
with open("kconfigmodel.json", "w") as f:
json.dump(output, f, cls=NpEncoder)
if __name__ == "__main__":
main()
|