1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|
#!/usr/bin/env python3
"""analyze-kconfig - Generate a model for KConfig selections
analyze-kconfig builds a model determining system attributes
(e.g. ROM or RAM usage) based on KConfig configuration variables.
Only boolean variables are supported at the moment.
"""
import argparse
import json
import kconfiglib
import logging
import os
import numpy as np
import dfatool.utils
from dfatool.loader import KConfigAttributes
from dfatool.model import AnalyticModel
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter, description=__doc__
)
parser.add_argument(
"--show-failing-symbols",
action="store_true",
help="Show Kconfig symbols related to build failures. Must be used with an experiment result directory.",
)
parser.add_argument(
"--show-nop-symbols",
action="store_true",
help="Show Kconfig symbols which are only present in a single configuration. Must be used with an experiment result directory.",
)
parser.add_argument(
"--force-tree",
action="store_true",
help="Build decision tree without checking for analytic functions first. Use this for large kconfig files.",
)
parser.add_argument(
"--export-model",
type=str,
help="Export kconfig-webconf NFP model to file",
metavar="FILE",
)
parser.add_argument(
"--config",
type=str,
help="Show model results for symbols in .config file",
metavar="FILE",
)
parser.add_argument(
"--log-level",
default=logging.INFO,
type=lambda level: getattr(logging, level.upper()),
help="Set log level",
)
parser.add_argument(
"--info", action="store_true", help="Show Kconfig and benchmark information"
)
parser.add_argument(
"--sample-size",
type=int,
help="Restrict model generation to N random samples",
metavar="N",
)
parser.add_argument("kconfig_path", type=str, help="Path to Kconfig file")
parser.add_argument(
"model",
type=str,
help="Path to experiment results directory or model.json file",
)
args = parser.parse_args()
if isinstance(args.log_level, int):
logging.basicConfig(level=args.log_level)
else:
print(f"Invalid log level. Setting log level to INFO.", file=sys.stderr)
if os.path.isdir(args.model):
attributes = KConfigAttributes(args.kconfig_path, args.model)
if args.show_failing_symbols:
show_failing_symbols(attributes)
if args.show_nop_symbols:
show_nop_symbols(attributes)
observations = list()
for param, attr in attributes.data:
for key, value in attr.items():
observations.append(
{
"name": key,
"param": param,
"attribute": value,
}
)
if args.sample_size:
shuffled_data_indices = np.random.permutation(
np.arange(len(attributes.data))
)
sample_indices = shuffled_data_indices[: args.sample_size]
raise RuntimeError("Not Implemented")
by_name, parameter_names = dfatool.utils.observations_to_by_name(observations)
# Release memory
observations = None
model = AnalyticModel(
by_name, parameter_names, compute_stats=not args.force_tree
)
if args.force_tree:
for name in model.names:
for attr in model.by_name[name]["attributes"]:
# TODO specify correct threshold
model.build_dtree(name, attr, 0)
model.fit_done = True
param_model, param_info = model.get_fitted()
analytic_quality = model.assess(param_model)
print("Model Error on Training Data:")
for name in model.names:
for attribute, error in analytic_quality[name].items():
mae = error["mae"]
smape = error["smape"]
print(f"{name:15s} {attribute:20s} ± {mae:10.2} / {smape:5.1f}%")
else:
raise NotImplementedError()
if args.info:
for name in model.names:
print(f"{name}:")
print(f""" Number of Measurements: {len(by_name[name]["param"])}""")
for i, param in enumerate(model.parameters):
param_values = model.distinct_param_values_by_name[name][i]
print(f" Parameter {param} ∈ {param_values}")
if args.export_model:
with open("nfpkeys.json", "r") as f:
nfpkeys = json.load(f)
complete_json_model = model.to_json(
with_param_name=True, param_names=parameter_names
)
json_model = dict()
for name, attribute_data in complete_json_model["name"].items():
for attribute, data in attribute_data.items():
json_model[attribute] = data.copy()
json_model[attribute].update(nfpkeys[name][attribute])
with open(args.export_model, "w") as f:
json.dump(json_model, f, sort_keys=True, cls=dfatool.utils.NpEncoder)
if args.config:
kconf = kconfiglib.Kconfig(args.kconfig_path)
kconf.load_config(args.config)
print(f"Model result for .config: {model.value_for_config(kconf)}")
for symbol in model.symbols:
kconf2 = kconfiglib.Kconfig(args.kconfig_path)
kconf2.load_config(args.config)
kconf_sym = kconf2.syms[symbol]
if kconf_sym.tri_value == 0 and 2 in kconf_sym.assignable:
kconf_sym.set_value(2)
elif kconf_sym.tri_value == 2 and 0 in kconf_sym.assignable:
kconf_sym.set_value(0)
else:
continue
# specific to multipass:
# Do not suggest changes which affect the application
skip = False
num_changes = 0
changed_symbols = list()
for i, csymbol in enumerate(model.symbols):
if kconf.syms[csymbol].tri_value != kconf2.syms[csymbol].tri_value:
num_changes += 1
changed_symbols.append(csymbol)
if (
csymbol.startswith("app_")
and kconf.syms[csymbol].tri_value
!= kconf2.syms[csymbol].tri_value
):
skip = True
break
if skip:
continue
try:
model_diff = model.value_for_config(kconf2) - model.value_for_config(
kconf
)
if kconf_sym.choice:
print(
f"Setting {kconf_sym.choice.name} to {kconf_sym.name} changes {num_changes:2d} symbols, model change: {model_diff:+5.0f}"
)
else:
print(
f"Setting {symbol} to {kconf_sym.str_value} changes {num_changes:2d} symbols, model change: {model_diff:+5.0f}"
)
except TypeError:
if kconf_sym.choice:
print(
f"Setting {kconf_sym.choice.name} to {kconf_sym.name} changes {num_changes:2d} symbols, model is undefined"
)
else:
print(
f"Setting {symbol} to {kconf_sym.str_value} changes {num_changes:2d} symbols, model is undefined"
)
for changed_symbol in changed_symbols:
print(
f" {changed_symbol:30s} -> {kconf2.syms[changed_symbol].str_value}"
)
def show_failing_symbols(data):
for symbol in data.param_names:
unique_values = list(set(map(lambda p: p[symbol], data.failures)))
for value in unique_values:
fail_count = len(list(filter(lambda p: p[symbol] == value, data.failures)))
success_count = len(
list(filter(lambda p: p[0][symbol] == value, data.data))
)
if success_count == 0 and fail_count > 0:
print(
f"Setting {symbol} to '{value}' reliably causes the build to fail (count = {fail_count})"
)
def show_nop_symbols(data):
for symbol in data.symbol_names:
true_count = len(
list(filter(lambda config: config[symbol] == True, data.failures))
) + len(list(filter(lambda config: config[0][symbol] == True, data.data)))
false_count = len(
list(filter(lambda config: config[symbol] == False, data.failures))
) + len(list(filter(lambda config: config[0][symbol] == False, data.data)))
if false_count == 0:
print(f"Symbol {symbol} is never n")
if true_count == 0:
print(f"Symbol {symbol} is never y")
pass
if __name__ == "__main__":
main()
|