summaryrefslogtreecommitdiff
path: root/bin/analyze-kconfig.py
blob: baf3cc73de5ca95bc28e137d4ad2086221ba0535 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
#!/usr/bin/env python3

"""analyze-kconfig - Generate a model for KConfig selections

analyze-kconfig builds a model determining system attributes
(e.g. ROM or RAM usage) based on KConfig configuration variables.
Only boolean variables are supported at the moment.
"""

import argparse
import hashlib
import json
import kconfiglib
import logging
import os
import sys
import time

import numpy as np

import dfatool.cli
import dfatool.plotter
import dfatool.utils
import dfatool.functions as df
from dfatool.loader.kconfig import KConfigAttributes
from dfatool.model import AnalyticModel
from dfatool.validation import CrossValidator


def write_csv(f, model, attr, precision=None):
    model_attr = model.attr_by_name[attr]
    attributes = sorted(model_attr.keys())
    print(", ".join(model.parameters) + ",     " + ", ".join(attributes), file=f)

    if precision is not None:
        data_wrapper = lambda x: f"{x:.{precision}f}"
    else:
        data_wrapper = str

    # by convention, model_attr[attr].param_values is the same regardless of 'attr'
    for param_tuple in model_attr[attributes[0]].param_values:
        param_data = map(
            lambda a: model_attr[a].by_param.get(tuple(param_tuple), list()), attributes
        )
        print(
            ", ".join(map(str, param_tuple))
            + ",     "
            + ", ".join(map(data_wrapper, map(np.mean, param_data))),
            file=f,
        )


def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.RawDescriptionHelpFormatter, description=__doc__
    )
    dfatool.cli.add_standard_arguments(parser)
    parser.add_argument(
        "--boolean-parameters",
        action="store_true",
        help="Use boolean (not categorial) parameters when building the NFP model",
    )
    parser.add_argument(
        "--show-failing-symbols",
        action="store_true",
        help="Show Kconfig symbols related to build failures. Must be used with an experiment result directory.",
    )
    parser.add_argument(
        "--show-nop-symbols",
        action="store_true",
        help="Show Kconfig symbols which are only present in a single configuration. Must be used with an experiment result directory.",
    )
    parser.add_argument(
        "--force-tree",
        action="store_true",
        help="Build decision tree without checking for analytic functions first. Use this for large kconfig files.",
    )
    parser.add_argument(
        "--skip-param-stats",
        action="store_true",
        help="Do not compute param stats that are required for RMT. Use this for large kconfig files.",
    )
    parser.add_argument(
        "--max-std",
        type=str,
        metavar="VALUE_OR_MAP",
        help="Specify desired maximum standard deviation for RMT generation, either as float (global) or <key>/<attribute>=<value>[,<key>/<attribute>=<value>,...]. Has no effect when using CART, LMT or XGBoost.",
    )
    parser.add_argument(
        "--csv-precision",
        type=int,
        metavar="NDIGITS",
        help="Precision (number of decimal digits) for CSV export",
    )
    parser.add_argument(
        "--export-csv",
        type=str,
        metavar="FILE",
        help="Export observations aggregated by parameter to FILE",
    )
    parser.add_argument(
        "--export-csv-only",
        action="store_true",
        help="Exit after exporting observations to CSV file",
    )
    parser.add_argument(
        "--export-aggregate",
        type=str,
        metavar="FILE.json.xz",
        help="Export aggregated observations (intermediate and generic benchmark data representation) to FILE. Exported observations are affected by --param-shift and --ignore-param.",
    )
    parser.add_argument(
        "--export-aggregate-only",
        action="store_true",
        help="Exit after exporting aggregated observations",
    )
    parser.add_argument(
        "--export-observations",
        type=str,
        metavar="FILE.json.xz",
        help="Export observations (intermediate and generic benchmark data representation) to FILE",
    )
    parser.add_argument(
        "--export-observations-only",
        action="store_true",
        help="Exit after exporting observations",
    )
    parser.add_argument(
        "--export-webconf",
        type=str,
        help="Export kconfig-webconf NFP model to file",
        metavar="FILE",
    )
    parser.add_argument(
        "--config",
        type=str,
        help="Show model results for symbols in .config file",
        metavar="FILE",
    )
    parser.add_argument(
        "--sample-size",
        type=int,
        help="Restrict model generation to N random samples",
        metavar="N",
    )
    parser.add_argument(
        "--show-quality",
        choices=["table"],
        action="append",
        default=list(),
        help="table: show LUT, model, and static prediction error for each key and attribute.",
    )
    parser.add_argument(
        "--plot-param",
        metavar="<name>:<attribute>:<parameter>[:gplearn function][;<name>:<attribute>:<parameter>:[function];...])",
        type=str,
        help="Plot measurements for <name> <attribute> by <parameter>. "
        "X axis is parameter value. "
        "Plots the model function as one solid line for each combination of non-<parameter> parameters. "
        "Also plots the corresponding measurements. "
        "If gplearn function is set, it is plotted using dashed lines.",
    )
    parser.add_argument("kconfig_path", type=str, help="Path to Kconfig file")
    parser.add_argument(
        "model",
        type=str,
        help="Path to experiment results directory or observations.json.xz file",
    )

    args = parser.parse_args()

    if args.skip_param_stats and not args.force_tree:
        print("--skip-param-stats requires --force-tree", file=sys.stderr)
        sys.exit(1)

    if args.log_level:
        numeric_level = getattr(logging, args.log_level.upper(), None)
        if not isinstance(numeric_level, int):
            print(f"Invalid log level: {args.log_level}", file=sys.stderr)
            sys.exit(1)
        logging.basicConfig(level=numeric_level)

    if args.export_dref:
        dref = dict()

    if os.path.isdir(args.model):
        attributes = KConfigAttributes(args.kconfig_path, args.model)
        if args.export_dref:
            dref.update(attributes.to_dref())

        if args.show_failing_symbols:
            show_failing_symbols(attributes)
        if args.show_nop_symbols:
            show_nop_symbols(attributes)

        observations = list()

        for param, attr in attributes.data:
            for key, value in attr.items():
                observations.append(
                    {
                        "name": key,
                        "param": param,
                        "attribute": value,
                    }
                )

        if args.sample_size:
            shuffled_data_indices = np.random.permutation(np.arange(len(observations)))
            sample_indices = shuffled_data_indices[: args.sample_size]
            new_observations = list()
            for sample_index in sample_indices:
                new_observations.append(observations[sample_index])
            observations = new_observations

        if args.export_observations:
            import lzma

            print(
                f"Exporting {len(observations)} observations to {args.export_observations}"
            )
            with lzma.open(args.export_observations, "wt") as f:
                json.dump(observations, f)
            if args.export_observations_only:
                return
    else:
        # show-failing-symbols, show-nop-symbols, DFATOOL_KCONF_WITH_CHOICE_NODES have no effect
        # in this branch.

        if os.path.exists(args.kconfig_path):
            attributes = KConfigAttributes(args.kconfig_path, None)
            if args.export_dref:
                dref.update(attributes.to_dref())

        if args.model.endswith("xz"):
            import lzma

            with lzma.open(args.model, "rt") as f:
                observations = json.load(f)
        elif args.model.endswith("ubjson"):
            import ubjson

            with open(args.model, "rb") as f:
                observations = ubjson.load(f)
        else:
            with open(args.model, "r") as f:
                observations = json.load(f)

        if bool(int(os.getenv("DFATOOL_KCONF_IGNORE_STRING", 0))) or bool(
            int(os.getenv("DFATOOL_KCONF_IGNORE_NUMERIC", 0))
        ):
            attributes = KConfigAttributes(args.kconfig_path, None)
            if type(observations) is dict:
                ignore_index = dict()
                new_param_names = list()
                for i, param in enumerate(observations["param_names"]):
                    if param in attributes.param_names:
                        new_param_names.append(param)
                    else:
                        ignore_index[i] = True
                observations["param_names"] = new_param_names
                for data in observations["by_name"].values():
                    for i in range(len(data["param"])):
                        for j in sorted(ignore_index.keys(), reverse=True):
                            data["param"][i].pop(j)
            else:
                for observation in observations:
                    to_remove = list()
                    for param in observation["param"].keys():
                        if param not in attributes.param_names:
                            to_remove.append(param)
                    for param in to_remove:
                        observation["param"].pop(param)

    if args.boolean_parameters:
        if type(observations) is list:
            logging.warning("--boolean-parameters is deprecated")
            dfatool.utils.observations_enum_to_bool(observations, kconfig=True)
        else:
            logging.error(
                "--boolean-parameters is only supported with legacy observations data"
            )
            sys.exit(1)

    function_override = dict()
    if args.function_override:
        for function_desc in args.function_override.split(";"):
            state_or_tran, attribute, *function_str = function_desc.split(" ")
            function_override[(state_or_tran, attribute)] = " ".join(function_str)

    by_name, parameter_names = dfatool.utils.observations_to_by_name(observations)

    if args.ignore_param:
        args.ignore_param = args.ignore_param.split(",")
        dfatool.utils.ignore_param(by_name, parameter_names, args.ignore_param)

    if args.param_shift:
        param_shift = dfatool.cli.parse_param_shift(args.param_shift)
        dfatool.utils.shift_param_in_aggregate(by_name, parameter_names, param_shift)

    if args.normalize_nfp:
        norm = dfatool.cli.parse_nfp_normalization(args.normalize_nfp)
        dfatool.utils.normalize_nfp_in_aggregate(by_name, norm)

    if args.export_aggregate:
        import lzma

        print(f"Exporting aggregate to {args.export_aggregate}")
        with lzma.open(args.export_aggregate, "wt") as f:
            json.dump(
                {"by_name": by_name, "param_names": parameter_names},
                f,
                cls=dfatool.utils.NpEncoder,
            )
        if args.export_aggregate_only:
            return

    # Release memory
    del observations

    if args.filter_param:
        args.filter_param = list(
            map(lambda x: x.split("="), args.filter_param.split(","))
        )
        dfatool.utils.filter_aggregate_by_param(
            by_name, parameter_names, args.filter_param
        )

    if args.max_std:
        max_std = dict()
        if "=" in args.max_std:
            for kkv in args.max_std.split(","):
                kk, v = kkv.split("=")
                key, attr = kk.split("/")
                if key not in max_std:
                    max_std[key] = dict()
                max_std[key][attr] = float(v)
        else:
            for key in by_name.keys():
                max_std[key] = dict()
                for attr in by_name[key]["attributes"]:
                    max_std[key][attr] = float(args.max_std)
    else:
        max_std = None

    constructor_start = time.time()
    model = AnalyticModel(
        by_name,
        parameter_names,
        force_tree=args.force_tree,
        max_std=max_std,
        compute_stats=not args.skip_param_stats,
        function_override=function_override,
    )
    constructor_duration = time.time() - constructor_start
    logging.debug(f"AnalyticModel(...) took {constructor_duration : 7.1f} seconds")

    if not model.names:
        logging.error(
            f"Model contains no names. Is --filter-param={args.filter_param} set too restrictive?"
        )
        sys.exit(1)

    if args.info:
        dfatool.cli.print_info_by_name(model, by_name)

    if args.export_pgf_unparam:
        dfatool.cli.export_pgf_unparam(model, args.export_pgf_unparam)

    if args.export_json_unparam:
        dfatool.cli.export_json_unparam(model, args.export_json_unparam)

    if args.plot_unparam:
        for kv in args.plot_unparam.split(";"):
            state_or_trans, attribute, ylabel = kv.split(":")
            fname = "param_y_{}_{}.pdf".format(state_or_trans, attribute)
            dfatool.plotter.plot_y(
                model.by_name[state_or_trans][attribute],
                xlabel="measurement #",
                ylabel=ylabel,
                # output=fname,
                show=not args.non_interactive,
            )

    if args.boxplot_unparam:
        title = None
        if args.filter_param:
            title = "filter: " + ", ".join(
                map(lambda kv: f"{kv[0]}={kv[1]}", args.filter_param)
            )
        for name in model.names:
            attr_names = sorted(model.attributes(name))
            dfatool.plotter.boxplot(
                attr_names,
                [model.by_name[name][attr] for attr in attr_names],
                xlabel="Attribute",
                output=f"{args.boxplot_unparam}{name}.pdf",
                title=title,
                show=not args.non_interactive,
            )
            for attribute in attr_names:
                dfatool.plotter.boxplot(
                    [attribute],
                    [model.by_name[name][attribute]],
                    output=f"{args.boxplot_unparam}{name}-{attribute}.pdf",
                    title=title,
                    show=not args.non_interactive,
                )

    if args.boxplot_param:
        dfatool.cli.boxplot_param(args, model)

    if args.plot_param:
        for kv in args.plot_param.split(";"):
            try:
                state_or_trans, attribute, param_name, *function = kv.split(":")
            except ValueError:
                print(
                    "Usage: --plot-param='state_or_trans attribute param_name [additional function spec]'",
                    file=sys.stderr,
                )
                sys.exit(1)
            if len(function):
                function = gplearn_to_function(" ".join(function))
            else:
                function = None
            dfatool.plotter.plot_param(
                model,
                state_or_trans,
                attribute,
                model.param_index(param_name),
                extra_function=function,
            )

    if args.cross_validate:
        xv_method, xv_count = args.cross_validate.split(":")
        xv_count = int(xv_count)
        xv = CrossValidator(
            AnalyticModel,
            by_name,
            parameter_names,
            force_tree=args.force_tree,
            max_std=max_std,
            compute_stats=not args.skip_param_stats,
        )
        xv.parameter_aware = args.parameter_aware_cross_validation
    else:
        xv_method = None

    static_model = model.get_static()
    try:
        lut_model = model.get_param_lut()
        lut_quality = model.assess(lut_model)
    except RuntimeError as e:
        if args.force_tree:
            # this is to be expected
            logging.debug(f"Skipping LUT model: {e}")
        else:
            logging.warning(f"Skipping LUT model: {e}")
        lut_model = None
        lut_quality = None

    if args.export_csv:
        for name in model.names:
            target = f"{args.export_csv}-{name}.csv"
            print(f"Exporting aggregated data to {target}")
            with open(target, "w") as f:
                write_csv(f, model, name, args.csv_precision)
        if args.export_csv_only:
            return

    fit_start_time = time.time()
    param_model, param_info = model.get_fitted()
    fit_duration = time.time() - fit_start_time
    logging.debug(f"model.get_fitted(...) took {fit_duration : 7.1f} seconds")

    if xv_method == "montecarlo":
        static_quality, _ = xv.montecarlo(
            lambda m: m.get_static(), xv_count, static=True
        )
        xv.export_filename = args.export_xv
        analytic_quality, xv_analytic_models = xv.montecarlo(
            lambda m: m.get_fitted()[0], xv_count
        )
    elif xv_method == "kfold":
        static_quality, _ = xv.kfold(lambda m: m.get_static(), xv_count, static=True)
        xv.export_filename = args.export_xv
        analytic_quality, xv_analytic_models = xv.kfold(
            lambda m: m.get_fitted()[0], xv_count
        )
    else:
        assess_start = time.time()
        static_quality = model.assess(static_model)
        assess_duration = time.time() - assess_start
        logging.debug(f"model.assess(static) took {assess_duration : 7.1f} seconds")
        if args.export_raw_predictions:
            analytic_quality, raw_results = model.assess(param_model, return_raw=True)
            with open(args.export_raw_predictions, "w") as f:
                json.dump(raw_results, f, cls=dfatool.utils.NpEncoder)
        else:
            assess_start = time.time()
            analytic_quality = model.assess(param_model)
            assess_duration = time.time() - assess_start
            logging.debug(f"model.assess(param) took {assess_duration : 7.1f} seconds")
        xv_analytic_models = None
        if lut_model:
            assess_start = time.time()
            lut_quality = model.assess(lut_model)
            assess_duration = time.time() - assess_start
            logging.debug(f"model.assess(lut) took {assess_duration : 7.1f} seconds")
        else:
            lut_quality = None

    if "static" in args.show_model or "all" in args.show_model:
        print("--- static model ---")
        for name in model.names:
            for attribute in model.attributes(name):
                dfatool.cli.print_static(
                    model,
                    static_model,
                    name,
                    attribute,
                    with_dependence="all" in args.show_model,
                )

    if "param" in args.show_model or "all" in args.show_model:
        print("--- param model ---")
        for name in model.names:
            for attribute in model.attributes(name):
                info = param_info(name, attribute)
                if type(info) is df.AnalyticFunction:
                    dfatool.cli.print_analyticinfo(f"{name:20s} {attribute:15s}", info)
                elif type(info) is df.CARTFunction:
                    dfatool.cli.print_cartinfo(
                        f"{name:20s} {attribute:15s}", info, model.parameters
                    )
                elif type(info) is df.FOLFunction:
                    dfatool.cli.print_analyticinfo(f"{name:20s} {attribute:15s}", info)
                elif type(info) is df.SplitFunction:
                    dfatool.cli.print_splitinfo(
                        model.parameters, info, f"{name:20s} {attribute:15s}"
                    )
                elif type(info) is df.StaticFunction:
                    dfatool.cli.print_staticinfo(f"{name:10s} {attribute:15s}", info)

    if "table" in args.show_quality or "all" in args.show_quality:
        if xv_method is not None:
            print(
                f"Model error ({args.error_metric}) after cross validation ({xv_method}, {xv_count}):"
            )
        else:
            print(f"Model error ({args.error_metric}) on training data:")
        dfatool.cli.model_quality_table(
            lut=lut_quality,
            model=analytic_quality,
            static=static_quality,
            model_info=param_info,
            xv_method=xv_method,
            error_metric=args.error_metric,
        )

    if not args.show_quality:
        if xv_method is not None:
            print(f"Model Error after Cross Validation ({xv_method}, {xv_count}):")
        else:
            print("Model Error on Training Data:")
        for name in sorted(model.names):
            for attribute, error in sorted(
                analytic_quality[name].items(), key=lambda kv: kv[0]
            ):
                mae = error["mae"]
                mape = error["mape"]
                smape = error["smape"]
                if mape is not None:
                    print(f"{name:15s} {attribute:20s}  ± {mae:10.2}  /  {mape:5.1f}%")
                else:
                    print(
                        f"{name:15s} {attribute:20s}  ± {mae:10.2}  /  {smape:5.1f}% SMAPE"
                    )

    if args.show_model_size:
        dfatool.cli.print_model_size(model)

    if args.export_webconf:
        attributes = KConfigAttributes(args.kconfig_path, None)
        try:
            with open(f"{attributes.kconfig_root}/nfpkeys.json", "r") as f:
                nfpkeys = json.load(f)
        except FileNotFoundError:
            logging.error(
                f"{attributes.kconfig_root}/nfpkeys.json is missing, webconf model will be incomplete"
            )
            nfpkeys = None
        kconfig_hasher = hashlib.sha256()
        with open(args.kconfig_path, "rb") as f:
            kconfig_data = f.read()
            while len(kconfig_data) > 0:
                kconfig_hasher.update(kconfig_data)
                kconfig_data = f.read()
        kconfig_hash = str(kconfig_hasher.hexdigest())
        complete_json_model = model.to_json(
            with_param_name=True, param_names=parameter_names
        )
        json_model = dict()
        for name, attribute_data in complete_json_model["name"].items():
            for attribute, data in attribute_data.items():
                json_model[attribute] = data.copy()
                if nfpkeys:
                    json_model[attribute].update(nfpkeys[name][attribute])
        out_model = {
            "model": json_model,
            "modelType": "dfatool-kconfig",
            "project": "tbd",
            "kconfigHash": kconfig_hash,
            "symbols": attributes.symbol_names,
            "choices": attributes.choice_names,
        }
        with open(args.export_webconf, "w") as f:
            json.dump(out_model, f, sort_keys=True, cls=dfatool.utils.NpEncoder)

    if args.export_dot:
        dfatool.cli.export_dot(model, args.export_dot)

    if args.export_dref:
        dref.update(
            model.to_dref(
                static_quality,
                lut_quality,
                analytic_quality,
                xv_models=xv_analytic_models,
            )
        )
        dref["constructor duration"] = (constructor_duration, r"\second")
        dref["regression duration"] = (fit_duration, r"\second")
        dfatool.cli.export_dataref(
            args.export_dref, dref, precision=args.dref_precision
        )

    if args.config:
        kconf = kconfiglib.Kconfig(args.kconfig_path)
        kconf.load_config(args.config)
        print(f"Model result for .config: {model.value_for_config(kconf)}")

        for symbol in model.symbols:
            kconf2 = kconfiglib.Kconfig(args.kconfig_path)
            kconf2.load_config(args.config)
            kconf_sym = kconf2.syms[symbol]
            if kconf_sym.tri_value == 0 and 2 in kconf_sym.assignable:
                kconf_sym.set_value(2)
            elif kconf_sym.tri_value == 2 and 0 in kconf_sym.assignable:
                kconf_sym.set_value(0)
            else:
                continue

            # specific to multipass:
            # Do not suggest changes which affect the application
            skip = False
            num_changes = 0
            changed_symbols = list()
            for i, csymbol in enumerate(model.symbols):
                if kconf.syms[csymbol].tri_value != kconf2.syms[csymbol].tri_value:
                    num_changes += 1
                    changed_symbols.append(csymbol)
                    if (
                        csymbol.startswith("app_")
                        and kconf.syms[csymbol].tri_value
                        != kconf2.syms[csymbol].tri_value
                    ):
                        skip = True
                        break
            if skip:
                continue

            try:
                model_diff = model.value_for_config(kconf2) - model.value_for_config(
                    kconf
                )
                if kconf_sym.choice:
                    print(
                        f"Setting {kconf_sym.choice.name} to {kconf_sym.name} changes {num_changes:2d} symbols, model change: {model_diff:+5.0f}"
                    )
                else:
                    print(
                        f"Setting {symbol} to {kconf_sym.str_value} changes {num_changes:2d} symbols, model change: {model_diff:+5.0f}"
                    )
            except TypeError:
                if kconf_sym.choice:
                    print(
                        f"Setting {kconf_sym.choice.name} to {kconf_sym.name} changes {num_changes:2d} symbols, model is undefined"
                    )
                else:
                    print(
                        f"Setting {symbol} to {kconf_sym.str_value} changes {num_changes:2d} symbols, model is undefined"
                    )
            for changed_symbol in changed_symbols:
                print(
                    f"    {changed_symbol:30s} -> {kconf2.syms[changed_symbol].str_value}"
                )


def show_failing_symbols(data):
    for symbol in data.param_names:
        unique_values = list(set(map(lambda p: p[symbol], data.failures)))
        for value in unique_values:
            fail_count = len(list(filter(lambda p: p[symbol] == value, data.failures)))
            success_count = len(
                list(filter(lambda p: p[0][symbol] == value, data.data))
            )
            if success_count == 0 and fail_count > 0:
                print(
                    f"Setting {symbol} to '{value}' reliably causes the build to fail (count = {fail_count})"
                )


def show_nop_symbols(data):
    for symbol in data.symbol_names:
        true_count = len(
            list(filter(lambda config: config[symbol] == True, data.failures))
        ) + len(list(filter(lambda config: config[0][symbol] == True, data.data)))
        false_count = len(
            list(filter(lambda config: config[symbol] == False, data.failures))
        ) + len(list(filter(lambda config: config[0][symbol] == False, data.data)))
        if false_count == 0:
            print(f"Symbol {symbol} is never n")
        if true_count == 0:
            print(f"Symbol {symbol} is never y")
    pass


if __name__ == "__main__":
    main()