summaryrefslogtreecommitdiff
path: root/bin/workload.py
blob: 9e066a50cc3e9b50da72f57064d69e8304b47e0d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#!/usr/bin/env python3

import argparse
import json
import logging
import sys
import dfatool.cli
import dfatool.utils
from dfatool.model import AnalyticModel


def main():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.RawDescriptionHelpFormatter, description=__doc__
    )
    parser.add_argument("--aggregate", choices=["sum"], default="sum")
    parser.add_argument("--aggregate-unit", choices=["s", "B/s"], default="s")
    parser.add_argument(
        "--aggregate-init",
        default=0,
        type=float,
    )
    parser.add_argument(
        "--log-level",
        metavar="LEVEL",
        choices=["debug", "info", "warning", "error"],
        default="warning",
        help="Set log level",
    )
    parser.add_argument("--normalize-output", type=str)
    parser.add_argument(
        "--info",
        action="store_true",
        help="Show benchmark information (number of measurements, parameter values, ...)",
    )
    parser.add_argument(
        "--models",
        nargs="+",
        type=str,
        help="Path to model file (.json or .json.xz)",
    )
    parser.add_argument(
        "--use-lut",
        action="store_true",
        help="Use LUT rather than performance model for prediction",
    )
    parser.add_argument("event", nargs="+", type=str)
    args = parser.parse_args()

    if args.log_level:
        numeric_level = getattr(logging, args.log_level.upper(), None)
        if not isinstance(numeric_level, int):
            print(f"Invalid log level: {args.log_level}", file=sys.stderr)
            sys.exit(1)
        logging.basicConfig(
            level=numeric_level,
            format="{asctime} {levelname}:{name}:{message}",
            style="{",
        )

    models = list()
    for model_file in args.models:
        with open(model_file, "r") as f:
            models.append(AnalyticModel.from_json(json.load(f)))

    if args.info:
        for i in range(len(models)):
            print(f"""{args.models[i]}: {" ".join(models[i].parameters)}""")
            for name in models[i].names:
                for attr in models[i].attributes(name):
                    print(f"    {name}.{attr}")

    aggregate = args.aggregate_init
    for event in args.event:

        event_normalizer = lambda p: p
        if "/" in event:
            v1, v2 = event.split("/")
            if dfatool.utils.is_numeric(v1):
                event = v2.strip()
                event_normalizer = lambda p: dfatool.utils.soft_cast_float(v1) / p
            elif dfatool.utils.is_numeric(v2):
                event = v1.strip()
                event_normalizer = lambda p: p / dfatool.utils.soft_cast_float(v2)
            else:
                raise RuntimeError(f"Cannot parse '{event}'")

        nn, param = event.split("(")
        name, action = nn.split(".")
        param_model = None
        ref_model = None

        for model in models:
            if name in model.names and action in model.attributes(name):
                ref_model = model
                if args.use_lut:
                    param_model = model.get_param_lut(allow_none=True)
                else:
                    param_model, param_info = model.get_fitted()
                break

        if param_model is None:
            raise RuntimeError(f"Did not find a model for {name}.{action}")

        param = param.removesuffix(")")
        if param == "":
            param = dict()
        else:
            param = dfatool.utils.parse_conf_str(param)

        param_list = dfatool.utils.param_dict_to_list(param, ref_model.parameters)

        if not args.use_lut and not param_info(name, action).is_predictable(param_list):
            logging.warning(
                f"Cannot predict {name}.{action}({param}), falling back to static model"
            )

        event_output = event_normalizer(
            param_model(
                name,
                action,
                param=param_list,
            )
        )

        if args.aggregate == "sum":
            aggregate += event_output

    if args.normalize_output:
        sf = dfatool.cli.parse_shift_function(
            "--normalize-output", args.normalize_output
        )
        print(dfatool.utils.human_readable(sf(aggregate), args.aggregate_unit))
    else:
        print(dfatool.utils.human_readable(aggregate, args.aggregate_unit))


if __name__ == "__main__":
    main()