1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
|
#!/usr/bin/env python3
import argparse
import json
import sys
import dfatool.cli
import dfatool.utils
from dfatool.model import AnalyticModel
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter, description=__doc__
)
parser.add_argument("--aggregate", choices=["sum"], default="sum")
parser.add_argument("--aggregate-unit", choices=["s", "B/s"], default="s")
parser.add_argument(
"--aggregate-init",
default=0,
type=float,
)
parser.add_argument("--normalize-output", type=str)
parser.add_argument(
"--info",
action="store_true",
help="Show benchmark information (number of measurements, parameter values, ...)",
)
parser.add_argument(
"--models",
nargs="+",
type=str,
help="Path to model file (.json or .json.xz)",
)
parser.add_argument("event", nargs="+", type=str)
args = parser.parse_args()
models = list()
for model_file in args.models:
with open(model_file, "r") as f:
models.append(AnalyticModel.from_json(json.load(f)))
if args.info:
for i in range(len(models)):
print(f"""{args.models[i]}: {" ".join(models[i].parameters)}""")
for name in models[i].names:
for attr in models[i].attributes(name):
print(f" {name}.{attr}")
aggregate = args.aggregate_init
for event in args.event:
event_normalizer = lambda p: p
if "/" in event:
v1, v2 = event.split("/")
if dfatool.utils.is_numeric(v1):
event = v2.strip()
event_normalizer = lambda p: dfatool.utils.soft_cast_float(v1) / p
elif dfatool.utils.is_numeric(v2):
event = v1.strip()
event_normalizer = lambda p: p / dfatool.utils.soft_cast_float(v2)
else:
raise RuntimeError(f"Cannot parse '{event}'")
nn, param = event.split("(")
name, action = nn.split(".")
param_model = None
ref_model = None
for model in models:
if name in model.names and action in model.attributes(name):
ref_model = model
param_model, param_info = model.get_fitted()
break
assert param_model is not None
param = param.removesuffix(")")
if param == "":
param = dict()
else:
param = dfatool.utils.parse_conf_str(param)
event_output = event_normalizer(
param_model(
name,
action,
param=dfatool.utils.param_dict_to_list(param, ref_model.parameters),
)
)
if args.aggregate == "sum":
aggregate += event_output
if args.normalize_output:
sf = dfatool.cli.parse_shift_function(
"--normalize-output", args.normalize_output
)
print(dfatool.utils.human_readable(sf(aggregate), args.aggregate_unit))
else:
print(dfatool.utils.human_readable(aggregate, args.aggregate_unit))
if __name__ == "__main__":
main()
|