summaryrefslogtreecommitdiff
path: root/ext/lightgbm/basic.py
blob: 5c3a32a4c00f1961a27efc95ef5000955ca5b6d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
# coding: utf-8
"""Wrapper for C API of LightGBM."""
import abc
import ctypes
import inspect
import json
import warnings
from collections import OrderedDict
from copy import deepcopy
from enum import Enum
from functools import wraps
from os import SEEK_END, environ
from os.path import getsize
from pathlib import Path
from tempfile import NamedTemporaryFile
from typing import TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Optional, Set, Tuple, Union

import numpy as np
import scipy.sparse

from .compat import (PANDAS_INSTALLED, PYARROW_INSTALLED, arrow_cffi, arrow_is_floating, arrow_is_integer, concat,
                     dt_DataTable, pa_Array, pa_chunked_array, pa_ChunkedArray, pa_compute, pa_Table,
                     pd_CategoricalDtype, pd_DataFrame, pd_Series)
from .libpath import find_lib_path

if TYPE_CHECKING:
    from typing import Literal

    # typing.TypeGuard was only introduced in Python 3.10
    try:
        from typing import TypeGuard
    except ImportError:
        from typing_extensions import TypeGuard


__all__ = [
    'Booster',
    'Dataset',
    'LGBMDeprecationWarning',
    'LightGBMError',
    'register_logger',
    'Sequence',
]

_BoosterHandle = ctypes.c_void_p
_DatasetHandle = ctypes.c_void_p
_ctypes_int_ptr = Union[
    "ctypes._Pointer[ctypes.c_int32]",
    "ctypes._Pointer[ctypes.c_int64]"
]
_ctypes_int_array = Union[
    "ctypes.Array[ctypes._Pointer[ctypes.c_int32]]",
    "ctypes.Array[ctypes._Pointer[ctypes.c_int64]]"
]
_ctypes_float_ptr = Union[
    "ctypes._Pointer[ctypes.c_float]",
    "ctypes._Pointer[ctypes.c_double]"
]
_ctypes_float_array = Union[
    "ctypes.Array[ctypes._Pointer[ctypes.c_float]]",
    "ctypes.Array[ctypes._Pointer[ctypes.c_double]]"
]
_LGBM_EvalFunctionResultType = Tuple[str, float, bool]
_LGBM_BoosterBestScoreType = Dict[str, Dict[str, float]]
_LGBM_BoosterEvalMethodResultType = Tuple[str, str, float, bool]
_LGBM_BoosterEvalMethodResultWithStandardDeviationType = Tuple[str, str, float, bool, float]
_LGBM_CategoricalFeatureConfiguration = Union[List[str], List[int], "Literal['auto']"]
_LGBM_FeatureNameConfiguration = Union[List[str], "Literal['auto']"]
_LGBM_GroupType = Union[
    List[float],
    List[int],
    np.ndarray,
    pd_Series,
    pa_Array,
    pa_ChunkedArray,
]
_LGBM_PositionType = Union[
    np.ndarray,
    pd_Series
]
_LGBM_InitScoreType = Union[
    List[float],
    List[List[float]],
    np.ndarray,
    pd_Series,
    pd_DataFrame,
    pa_Table,
    pa_Array,
    pa_ChunkedArray,
]
_LGBM_TrainDataType = Union[
    str,
    Path,
    np.ndarray,
    pd_DataFrame,
    dt_DataTable,
    scipy.sparse.spmatrix,
    "Sequence",
    List["Sequence"],
    List[np.ndarray],
    pa_Table
]
_LGBM_LabelType = Union[
    List[float],
    List[int],
    np.ndarray,
    pd_Series,
    pd_DataFrame,
    pa_Array,
    pa_ChunkedArray,
]
_LGBM_PredictDataType = Union[
    str,
    Path,
    np.ndarray,
    pd_DataFrame,
    dt_DataTable,
    scipy.sparse.spmatrix,
    pa_Table,
]
_LGBM_WeightType = Union[
    List[float],
    List[int],
    np.ndarray,
    pd_Series,
    pa_Array,
    pa_ChunkedArray,
]
ZERO_THRESHOLD = 1e-35


def _is_zero(x: float) -> bool:
    return -ZERO_THRESHOLD <= x <= ZERO_THRESHOLD


def _get_sample_count(total_nrow: int, params: str) -> int:
    sample_cnt = ctypes.c_int(0)
    _safe_call(_LIB.LGBM_GetSampleCount(
        ctypes.c_int32(total_nrow),
        _c_str(params),
        ctypes.byref(sample_cnt),
    ))
    return sample_cnt.value


class _MissingType(Enum):
    NONE = 'None'
    NAN = 'NaN'
    ZERO = 'Zero'


class _DummyLogger:
    def info(self, msg: str) -> None:
        print(msg)  # noqa: T201

    def warning(self, msg: str) -> None:
        warnings.warn(msg, stacklevel=3)


_LOGGER: Any = _DummyLogger()
_INFO_METHOD_NAME = "info"
_WARNING_METHOD_NAME = "warning"


def _has_method(logger: Any, method_name: str) -> bool:
    return callable(getattr(logger, method_name, None))


def register_logger(
    logger: Any, info_method_name: str = "info", warning_method_name: str = "warning"
) -> None:
    """Register custom logger.

    Parameters
    ----------
    logger : Any
        Custom logger.
    info_method_name : str, optional (default="info")
        Method used to log info messages.
    warning_method_name : str, optional (default="warning")
        Method used to log warning messages.
    """
    if not _has_method(logger, info_method_name) or not _has_method(logger, warning_method_name):
        raise TypeError(
            f"Logger must provide '{info_method_name}' and '{warning_method_name}' method"
        )

    global _LOGGER, _INFO_METHOD_NAME, _WARNING_METHOD_NAME
    _LOGGER = logger
    _INFO_METHOD_NAME = info_method_name
    _WARNING_METHOD_NAME = warning_method_name


def _normalize_native_string(func: Callable[[str], None]) -> Callable[[str], None]:
    """Join log messages from native library which come by chunks."""
    msg_normalized: List[str] = []

    @wraps(func)
    def wrapper(msg: str) -> None:
        nonlocal msg_normalized
        if msg.strip() == '':
            msg = ''.join(msg_normalized)
            msg_normalized = []
            return func(msg)
        else:
            msg_normalized.append(msg)

    return wrapper


def _log_info(msg: str) -> None:
    getattr(_LOGGER, _INFO_METHOD_NAME)(msg)


def _log_warning(msg: str) -> None:
    getattr(_LOGGER, _WARNING_METHOD_NAME)(msg)


@_normalize_native_string
def _log_native(msg: str) -> None:
    getattr(_LOGGER, _INFO_METHOD_NAME)(msg)


def _log_callback(msg: bytes) -> None:
    """Redirect logs from native library into Python."""
    _log_native(str(msg.decode('utf-8')))


def _load_lib() -> ctypes.CDLL:
    """Load LightGBM library."""
    lib_path = find_lib_path()
    lib = ctypes.cdll.LoadLibrary(lib_path[0])
    lib.LGBM_GetLastError.restype = ctypes.c_char_p
    callback = ctypes.CFUNCTYPE(None, ctypes.c_char_p)
    lib.callback = callback(_log_callback)  # type: ignore[attr-defined]
    if lib.LGBM_RegisterLogCallback(lib.callback) != 0:
        raise LightGBMError(lib.LGBM_GetLastError().decode('utf-8'))
    return lib


# we don't need lib_lightgbm while building docs
_LIB: ctypes.CDLL
if environ.get('LIGHTGBM_BUILD_DOC', False):
    from unittest.mock import Mock  # isort: skip
    _LIB = Mock(ctypes.CDLL)  # type: ignore
else:
    _LIB = _load_lib()


_NUMERIC_TYPES = (int, float, bool)
_ArrayLike = Union[List, np.ndarray, pd_Series]


def _safe_call(ret: int) -> None:
    """Check the return value from C API call.

    Parameters
    ----------
    ret : int
        The return value from C API calls.
    """
    if ret != 0:
        raise LightGBMError(_LIB.LGBM_GetLastError().decode('utf-8'))


def _is_numeric(obj: Any) -> bool:
    """Check whether object is a number or not, include numpy number, etc."""
    try:
        float(obj)
        return True
    except (TypeError, ValueError):
        # TypeError: obj is not a string or a number
        # ValueError: invalid literal
        return False


def _is_numpy_1d_array(data: Any) -> bool:
    """Check whether data is a numpy 1-D array."""
    return isinstance(data, np.ndarray) and len(data.shape) == 1


def _is_numpy_column_array(data: Any) -> bool:
    """Check whether data is a column numpy array."""
    if not isinstance(data, np.ndarray):
        return False
    shape = data.shape
    return len(shape) == 2 and shape[1] == 1


def _cast_numpy_array_to_dtype(array: np.ndarray, dtype: "np.typing.DTypeLike") -> np.ndarray:
    """Cast numpy array to given dtype."""
    if array.dtype == dtype:
        return array
    return array.astype(dtype=dtype, copy=False)


def _is_1d_list(data: Any) -> bool:
    """Check whether data is a 1-D list."""
    return isinstance(data, list) and (not data or _is_numeric(data[0]))


def _is_list_of_numpy_arrays(data: Any) -> "TypeGuard[List[np.ndarray]]":
    return (
        isinstance(data, list)
        and all(isinstance(x, np.ndarray) for x in data)
    )


def _is_list_of_sequences(data: Any) -> "TypeGuard[List[Sequence]]":
    return (
        isinstance(data, list)
        and all(isinstance(x, Sequence) for x in data)
    )


def _is_1d_collection(data: Any) -> bool:
    """Check whether data is a 1-D collection."""
    return (
        _is_numpy_1d_array(data)
        or _is_numpy_column_array(data)
        or _is_1d_list(data)
        or isinstance(data, pd_Series)
    )


def _list_to_1d_numpy(
    data: Any,
    dtype: "np.typing.DTypeLike",
    name: str
) -> np.ndarray:
    """Convert data to numpy 1-D array."""
    if _is_numpy_1d_array(data):
        return _cast_numpy_array_to_dtype(data, dtype)
    elif _is_numpy_column_array(data):
        _log_warning('Converting column-vector to 1d array')
        array = data.ravel()
        return _cast_numpy_array_to_dtype(array, dtype)
    elif _is_1d_list(data):
        return np.array(data, dtype=dtype, copy=False)
    elif isinstance(data, pd_Series):
        _check_for_bad_pandas_dtypes(data.to_frame().dtypes)
        return np.array(data, dtype=dtype, copy=False)  # SparseArray should be supported as well
    else:
        raise TypeError(f"Wrong type({type(data).__name__}) for {name}.\n"
                        "It should be list, numpy 1-D array or pandas Series")


def _is_numpy_2d_array(data: Any) -> bool:
    """Check whether data is a numpy 2-D array."""
    return isinstance(data, np.ndarray) and len(data.shape) == 2 and data.shape[1] > 1


def _is_2d_list(data: Any) -> bool:
    """Check whether data is a 2-D list."""
    return isinstance(data, list) and len(data) > 0 and _is_1d_list(data[0])


def _is_2d_collection(data: Any) -> bool:
    """Check whether data is a 2-D collection."""
    return (
        _is_numpy_2d_array(data)
        or _is_2d_list(data)
        or isinstance(data, pd_DataFrame)
    )


def _is_pyarrow_array(data: Any) -> bool:
    """Check whether data is a PyArrow array."""
    return isinstance(data, (pa_Array, pa_ChunkedArray))


def _is_pyarrow_table(data: Any) -> bool:
    """Check whether data is a PyArrow table."""
    return isinstance(data, pa_Table)


class _ArrowCArray:
    """Simple wrapper around the C representation of an Arrow type."""

    n_chunks: int
    chunks: arrow_cffi.CData
    schema: arrow_cffi.CData

    def __init__(self, n_chunks: int, chunks: arrow_cffi.CData, schema: arrow_cffi.CData):
        self.n_chunks = n_chunks
        self.chunks = chunks
        self.schema = schema

    @property
    def chunks_ptr(self) -> int:
        """Returns the address of the pointer to the list of chunks making up the array."""
        return int(arrow_cffi.cast("uintptr_t", arrow_cffi.addressof(self.chunks[0])))

    @property
    def schema_ptr(self) -> int:
        """Returns the address of the pointer to the schema of the array."""
        return int(arrow_cffi.cast("uintptr_t", self.schema))


def _export_arrow_to_c(data: pa_Table) -> _ArrowCArray:
    """Export an Arrow type to its C representation."""
    # Obtain objects to export
    if isinstance(data, pa_Array):
        export_objects = [data]
    elif isinstance(data, pa_ChunkedArray):
        export_objects = data.chunks
    elif isinstance(data, pa_Table):
        export_objects = data.to_batches()
    else:
        raise ValueError(f"data of type '{type(data)}' cannot be exported to Arrow")

    # Prepare export
    chunks = arrow_cffi.new("struct ArrowArray[]", len(export_objects))
    schema = arrow_cffi.new("struct ArrowSchema*")

    # Export all objects
    for i, obj in enumerate(export_objects):
        chunk_ptr = int(arrow_cffi.cast("uintptr_t", arrow_cffi.addressof(chunks[i])))
        if i == 0:
            schema_ptr = int(arrow_cffi.cast("uintptr_t", schema))
            obj._export_to_c(chunk_ptr, schema_ptr)
        else:
            obj._export_to_c(chunk_ptr)

    return _ArrowCArray(len(chunks), chunks, schema)



def _data_to_2d_numpy(
    data: Any,
    dtype: "np.typing.DTypeLike",
    name: str
) -> np.ndarray:
    """Convert data to numpy 2-D array."""
    if _is_numpy_2d_array(data):
        return _cast_numpy_array_to_dtype(data, dtype)
    if _is_2d_list(data):
        return np.array(data, dtype=dtype)
    if isinstance(data, pd_DataFrame):
        _check_for_bad_pandas_dtypes(data.dtypes)
        return _cast_numpy_array_to_dtype(data.values, dtype)
    raise TypeError(f"Wrong type({type(data).__name__}) for {name}.\n"
                    "It should be list of lists, numpy 2-D array or pandas DataFrame")


def _cfloat32_array_to_numpy(*, cptr: "ctypes._Pointer", length: int) -> np.ndarray:
    """Convert a ctypes float pointer array to a numpy array."""
    if isinstance(cptr, ctypes.POINTER(ctypes.c_float)):
        return np.ctypeslib.as_array(cptr, shape=(length,)).copy()
    else:
        raise RuntimeError('Expected float pointer')


def _cfloat64_array_to_numpy(*, cptr: "ctypes._Pointer", length: int) -> np.ndarray:
    """Convert a ctypes double pointer array to a numpy array."""
    if isinstance(cptr, ctypes.POINTER(ctypes.c_double)):
        return np.ctypeslib.as_array(cptr, shape=(length,)).copy()
    else:
        raise RuntimeError('Expected double pointer')


def _cint32_array_to_numpy(*, cptr: "ctypes._Pointer", length: int) -> np.ndarray:
    """Convert a ctypes int pointer array to a numpy array."""
    if isinstance(cptr, ctypes.POINTER(ctypes.c_int32)):
        return np.ctypeslib.as_array(cptr, shape=(length,)).copy()
    else:
        raise RuntimeError('Expected int32 pointer')


def _cint64_array_to_numpy(*, cptr: "ctypes._Pointer", length: int) -> np.ndarray:
    """Convert a ctypes int pointer array to a numpy array."""
    if isinstance(cptr, ctypes.POINTER(ctypes.c_int64)):
        return np.ctypeslib.as_array(cptr, shape=(length,)).copy()
    else:
        raise RuntimeError('Expected int64 pointer')


def _c_str(string: str) -> ctypes.c_char_p:
    """Convert a Python string to C string."""
    return ctypes.c_char_p(string.encode('utf-8'))


def _c_array(ctype: type, values: List[Any]) -> ctypes.Array:
    """Convert a Python array to C array."""
    return (ctype * len(values))(*values)  # type: ignore[operator]


def _json_default_with_numpy(obj: Any) -> Any:
    """Convert numpy classes to JSON serializable objects."""
    if isinstance(obj, (np.integer, np.floating, np.bool_)):
        return obj.item()
    elif isinstance(obj, np.ndarray):
        return obj.tolist()
    else:
        return obj


def _to_string(x: Union[int, float, str, List]) -> str:
    if isinstance(x, list):
        val_list = ",".join(str(val) for val in x)
        return f"[{val_list}]"
    else:
        return str(x)


def _param_dict_to_str(data: Optional[Dict[str, Any]]) -> str:
    """Convert Python dictionary to string, which is passed to C API."""
    if data is None or not data:
        return ""
    pairs = []
    for key, val in data.items():
        if isinstance(val, (list, tuple, set)) or _is_numpy_1d_array(val):
            pairs.append(f"{key}={','.join(map(_to_string, val))}")
        elif isinstance(val, (str, Path, _NUMERIC_TYPES)) or _is_numeric(val):
            pairs.append(f"{key}={val}")
        elif val is not None:
            raise TypeError(f'Unknown type of parameter:{key}, got:{type(val).__name__}')
    return ' '.join(pairs)


class _TempFile:
    """Proxy class to workaround errors on Windows."""

    def __enter__(self):
        with NamedTemporaryFile(prefix="lightgbm_tmp_", delete=True) as f:
            self.name = f.name
            self.path = Path(self.name)
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        if self.path.is_file():
            self.path.unlink()


class LightGBMError(Exception):
    """Error thrown by LightGBM."""

    pass


# DeprecationWarning is not shown by default, so let's create our own with higher level
class LGBMDeprecationWarning(UserWarning):
    """Custom deprecation warning."""

    pass


class _ConfigAliases:
    # lazy evaluation to allow import without dynamic library, e.g., for docs generation
    aliases = None

    @staticmethod
    def _get_all_param_aliases() -> Dict[str, List[str]]:
        buffer_len = 1 << 20
        tmp_out_len = ctypes.c_int64(0)
        string_buffer = ctypes.create_string_buffer(buffer_len)
        ptr_string_buffer = ctypes.c_char_p(ctypes.addressof(string_buffer))
        _safe_call(_LIB.LGBM_DumpParamAliases(
            ctypes.c_int64(buffer_len),
            ctypes.byref(tmp_out_len),
            ptr_string_buffer))
        actual_len = tmp_out_len.value
        # if buffer length is not long enough, re-allocate a buffer
        if actual_len > buffer_len:
            string_buffer = ctypes.create_string_buffer(actual_len)
            ptr_string_buffer = ctypes.c_char_p(ctypes.addressof(string_buffer))
            _safe_call(_LIB.LGBM_DumpParamAliases(
                ctypes.c_int64(actual_len),
                ctypes.byref(tmp_out_len),
                ptr_string_buffer))
        return json.loads(
            string_buffer.value.decode('utf-8'),
            object_hook=lambda obj: {k: [k] + v for k, v in obj.items()}
        )

    @classmethod
    def get(cls, *args) -> Set[str]:
        if cls.aliases is None:
            cls.aliases = cls._get_all_param_aliases()
        ret = set()
        for i in args:
            ret.update(cls.get_sorted(i))
        return ret

    @classmethod
    def get_sorted(cls, name: str) -> List[str]:
        if cls.aliases is None:
            cls.aliases = cls._get_all_param_aliases()
        return cls.aliases.get(name, [name])

    @classmethod
    def get_by_alias(cls, *args) -> Set[str]:
        if cls.aliases is None:
            cls.aliases = cls._get_all_param_aliases()
        ret = set(args)
        for arg in args:
            for aliases in cls.aliases.values():
                if arg in aliases:
                    ret.update(aliases)
                    break
        return ret


def _choose_param_value(main_param_name: str, params: Dict[str, Any], default_value: Any) -> Dict[str, Any]:
    """Get a single parameter value, accounting for aliases.

    Parameters
    ----------
    main_param_name : str
        Name of the main parameter to get a value for. One of the keys of ``_ConfigAliases``.
    params : dict
        Dictionary of LightGBM parameters.
    default_value : Any
        Default value to use for the parameter, if none is found in ``params``.

    Returns
    -------
    params : dict
        A ``params`` dict with exactly one value for ``main_param_name``, and all aliases ``main_param_name`` removed.
        If both ``main_param_name`` and one or more aliases for it are found, the value of ``main_param_name`` will be preferred.
    """
    # avoid side effects on passed-in parameters
    params = deepcopy(params)

    aliases = _ConfigAliases.get_sorted(main_param_name)
    aliases = [a for a in aliases if a != main_param_name]

    # if main_param_name was provided, keep that value and remove all aliases
    if main_param_name in params.keys():
        for param in aliases:
            params.pop(param, None)
        return params

    # if main param name was not found, search for an alias
    for param in aliases:
        if param in params.keys():
            params[main_param_name] = params[param]
            break

    if main_param_name in params.keys():
        for param in aliases:
            params.pop(param, None)
        return params

    # neither of main_param_name, aliases were found
    params[main_param_name] = default_value

    return params


_MAX_INT32 = (1 << 31) - 1

"""Macro definition of data type in C API of LightGBM"""
_C_API_DTYPE_FLOAT32 = 0
_C_API_DTYPE_FLOAT64 = 1
_C_API_DTYPE_INT32 = 2
_C_API_DTYPE_INT64 = 3

"""Matrix is row major in Python"""
_C_API_IS_ROW_MAJOR = 1

"""Macro definition of prediction type in C API of LightGBM"""
_C_API_PREDICT_NORMAL = 0
_C_API_PREDICT_RAW_SCORE = 1
_C_API_PREDICT_LEAF_INDEX = 2
_C_API_PREDICT_CONTRIB = 3

"""Macro definition of sparse matrix type"""
_C_API_MATRIX_TYPE_CSR = 0
_C_API_MATRIX_TYPE_CSC = 1

"""Macro definition of feature importance type"""
_C_API_FEATURE_IMPORTANCE_SPLIT = 0
_C_API_FEATURE_IMPORTANCE_GAIN = 1

"""Data type of data field"""
_FIELD_TYPE_MAPPER = {
    "label": _C_API_DTYPE_FLOAT32,
    "weight": _C_API_DTYPE_FLOAT32,
    "init_score": _C_API_DTYPE_FLOAT64,
    "group": _C_API_DTYPE_INT32,
    "position": _C_API_DTYPE_INT32
}

"""String name to int feature importance type mapper"""
_FEATURE_IMPORTANCE_TYPE_MAPPER = {
    "split": _C_API_FEATURE_IMPORTANCE_SPLIT,
    "gain": _C_API_FEATURE_IMPORTANCE_GAIN
}


def _convert_from_sliced_object(data: np.ndarray) -> np.ndarray:
    """Fix the memory of multi-dimensional sliced object."""
    if isinstance(data, np.ndarray) and isinstance(data.base, np.ndarray):
        if not data.flags.c_contiguous:
            _log_warning("Usage of np.ndarray subset (sliced data) is not recommended "
                         "due to it will double the peak memory cost in LightGBM.")
            return np.copy(data)
    return data


def _c_float_array(
    data: np.ndarray
) -> Tuple[_ctypes_float_ptr, int, np.ndarray]:
    """Get pointer of float numpy array / list."""
    if _is_1d_list(data):
        data = np.array(data, copy=False)
    if _is_numpy_1d_array(data):
        data = _convert_from_sliced_object(data)
        assert data.flags.c_contiguous
        ptr_data: _ctypes_float_ptr
        if data.dtype == np.float32:
            ptr_data = data.ctypes.data_as(ctypes.POINTER(ctypes.c_float))
            type_data = _C_API_DTYPE_FLOAT32
        elif data.dtype == np.float64:
            ptr_data = data.ctypes.data_as(ctypes.POINTER(ctypes.c_double))
            type_data = _C_API_DTYPE_FLOAT64
        else:
            raise TypeError(f"Expected np.float32 or np.float64, met type({data.dtype})")
    else:
        raise TypeError(f"Unknown type({type(data).__name__})")
    return (ptr_data, type_data, data)  # return `data` to avoid the temporary copy is freed


def _c_int_array(
    data: np.ndarray
) -> Tuple[_ctypes_int_ptr, int, np.ndarray]:
    """Get pointer of int numpy array / list."""
    if _is_1d_list(data):
        data = np.array(data, copy=False)
    if _is_numpy_1d_array(data):
        data = _convert_from_sliced_object(data)
        assert data.flags.c_contiguous
        ptr_data: _ctypes_int_ptr
        if data.dtype == np.int32:
            ptr_data = data.ctypes.data_as(ctypes.POINTER(ctypes.c_int32))
            type_data = _C_API_DTYPE_INT32
        elif data.dtype == np.int64:
            ptr_data = data.ctypes.data_as(ctypes.POINTER(ctypes.c_int64))
            type_data = _C_API_DTYPE_INT64
        else:
            raise TypeError(f"Expected np.int32 or np.int64, met type({data.dtype})")
    else:
        raise TypeError(f"Unknown type({type(data).__name__})")
    return (ptr_data, type_data, data)  # return `data` to avoid the temporary copy is freed


def _is_allowed_numpy_dtype(dtype: type) -> bool:
    float128 = getattr(np, 'float128', type(None))
    return (
        issubclass(dtype, (np.integer, np.floating, np.bool_))
        and not issubclass(dtype, (np.timedelta64, float128))
    )


def _check_for_bad_pandas_dtypes(pandas_dtypes_series: pd_Series) -> None:
    bad_pandas_dtypes = [
        f'{column_name}: {pandas_dtype}'
        for column_name, pandas_dtype in pandas_dtypes_series.items()
        if not _is_allowed_numpy_dtype(pandas_dtype.type)
    ]
    if bad_pandas_dtypes:
        raise ValueError('pandas dtypes must be int, float or bool.\n'
                         f'Fields with bad pandas dtypes: {", ".join(bad_pandas_dtypes)}')


def _pandas_to_numpy(
    data: pd_DataFrame,
    target_dtype: "np.typing.DTypeLike"
) -> np.ndarray:
    _check_for_bad_pandas_dtypes(data.dtypes)
    try:
        # most common case (no nullable dtypes)
        return data.to_numpy(dtype=target_dtype, copy=False)
    except TypeError:
        # 1.0 <= pd version < 1.1 and nullable dtypes, least common case
        # raises error because array is casted to type(pd.NA) and there's no na_value argument
        return data.astype(target_dtype, copy=False).values
    except ValueError:
        # data has nullable dtypes, but we can specify na_value argument and copy will be made
        return data.to_numpy(dtype=target_dtype, na_value=np.nan)


def _data_from_pandas(
    data: pd_DataFrame,
    feature_name: _LGBM_FeatureNameConfiguration,
    categorical_feature: _LGBM_CategoricalFeatureConfiguration,
    pandas_categorical: Optional[List[List]]
) -> Tuple[np.ndarray, List[str], Union[List[str], List[int]], List[List]]:
    if len(data.shape) != 2 or data.shape[0] < 1:
        raise ValueError('Input data must be 2 dimensional and non empty.')

    # take shallow copy in case we modify categorical columns
    # whole column modifications don't change the original df
    data = data.copy(deep=False)

    # determine feature names
    if feature_name == 'auto':
        feature_name = [str(col) for col in data.columns]

    # determine categorical features
    cat_cols = [col for col, dtype in zip(data.columns, data.dtypes) if isinstance(dtype, pd_CategoricalDtype)]
    cat_cols_not_ordered: List[str] = [col for col in cat_cols if not data[col].cat.ordered]
    if pandas_categorical is None:  # train dataset
        pandas_categorical = [list(data[col].cat.categories) for col in cat_cols]
    else:
        if len(cat_cols) != len(pandas_categorical):
            raise ValueError('train and valid dataset categorical_feature do not match.')
        for col, category in zip(cat_cols, pandas_categorical):
            if list(data[col].cat.categories) != list(category):
                data[col] = data[col].cat.set_categories(category)
    if len(cat_cols):  # cat_cols is list
        data[cat_cols] = data[cat_cols].apply(lambda x: x.cat.codes).replace({-1: np.nan})

    # use cat cols from DataFrame
    if categorical_feature == 'auto':
        categorical_feature = cat_cols_not_ordered

    df_dtypes = [dtype.type for dtype in data.dtypes]
    # so that the target dtype considers floats
    df_dtypes.append(np.float32)
    target_dtype = np.result_type(*df_dtypes)

    return (
        _pandas_to_numpy(data, target_dtype=target_dtype),
        feature_name,
        categorical_feature,
        pandas_categorical
    )


def _dump_pandas_categorical(
    pandas_categorical: Optional[List[List]],
    file_name: Optional[Union[str, Path]] = None
) -> str:
    categorical_json = json.dumps(pandas_categorical, default=_json_default_with_numpy)
    pandas_str = f'\npandas_categorical:{categorical_json}\n'
    if file_name is not None:
        with open(file_name, 'a') as f:
            f.write(pandas_str)
    return pandas_str


def _load_pandas_categorical(
    file_name: Optional[Union[str, Path]] = None,
    model_str: Optional[str] = None
) -> Optional[List[List]]:
    pandas_key = 'pandas_categorical:'
    offset = -len(pandas_key)
    if file_name is not None:
        max_offset = -getsize(file_name)
        with open(file_name, 'rb') as f:
            while True:
                if offset < max_offset:
                    offset = max_offset
                f.seek(offset, SEEK_END)
                lines = f.readlines()
                if len(lines) >= 2:
                    break
                offset *= 2
        last_line = lines[-1].decode('utf-8').strip()
        if not last_line.startswith(pandas_key):
            last_line = lines[-2].decode('utf-8').strip()
    elif model_str is not None:
        idx = model_str.rfind('\n', 0, offset)
        last_line = model_str[idx:].strip()
    if last_line.startswith(pandas_key):
        return json.loads(last_line[len(pandas_key):])
    else:
        return None


class Sequence(abc.ABC):
    """
    Generic data access interface.

    Object should support the following operations:

    .. code-block::

        # Get total row number.
        >>> len(seq)
        # Random access by row index. Used for data sampling.
        >>> seq[10]
        # Range data access. Used to read data in batch when constructing Dataset.
        >>> seq[0:100]
        # Optionally specify batch_size to control range data read size.
        >>> seq.batch_size

    - With random access, **data sampling does not need to go through all data**.
    - With range data access, there's **no need to read all data into memory thus reduce memory usage**.

    .. versionadded:: 3.3.0

    Attributes
    ----------
    batch_size : int
        Default size of a batch.
    """

    batch_size = 4096  # Defaults to read 4K rows in each batch.

    @abc.abstractmethod
    def __getitem__(self, idx: Union[int, slice, List[int]]) -> np.ndarray:
        """Return data for given row index.

        A basic implementation should look like this:

        .. code-block:: python

            if isinstance(idx, numbers.Integral):
                return self._get_one_line(idx)
            elif isinstance(idx, slice):
                return np.stack([self._get_one_line(i) for i in range(idx.start, idx.stop)])
            elif isinstance(idx, list):
                # Only required if using ``Dataset.subset()``.
                return np.array([self._get_one_line(i) for i in idx])
            else:
                raise TypeError(f"Sequence index must be integer, slice or list, got {type(idx).__name__}")

        Parameters
        ----------
        idx : int, slice[int], list[int]
            Item index.

        Returns
        -------
        result : numpy 1-D array or numpy 2-D array
            1-D array if idx is int, 2-D array if idx is slice or list.
        """
        raise NotImplementedError("Sub-classes of lightgbm.Sequence must implement __getitem__()")

    @abc.abstractmethod
    def __len__(self) -> int:
        """Return row count of this sequence."""
        raise NotImplementedError("Sub-classes of lightgbm.Sequence must implement __len__()")


class _InnerPredictor:
    """_InnerPredictor of LightGBM.

    Not exposed to user.
    Used only for prediction, usually used for continued training.

    .. note::

        Can be converted from Booster, but cannot be converted to Booster.
    """

    def __init__(
        self,
        booster_handle: _BoosterHandle,
        pandas_categorical: Optional[List[List]],
        pred_parameter: Dict[str, Any],
        manage_handle: bool
    ):
        """Initialize the _InnerPredictor.

        Parameters
        ----------
        booster_handle : object
            Handle of Booster.
        pandas_categorical : list of list, or None
            If provided, list of categories for ``pandas`` categorical columns.
            Where the ``i``th element of the list contains the categories for the ``i``th categorical feature.
        pred_parameter : dict
            Other parameters for the prediction.
        manage_handle : bool
            If ``True``, free the corresponding Booster on the C++ side when this Python object is deleted.
        """
        self._handle = booster_handle
        self.__is_manage_handle = manage_handle
        self.pandas_categorical = pandas_categorical
        self.pred_parameter = _param_dict_to_str(pred_parameter)

        out_num_class = ctypes.c_int(0)
        _safe_call(
            _LIB.LGBM_BoosterGetNumClasses(
                self._handle,
                ctypes.byref(out_num_class)
            )
        )
        self.num_class = out_num_class.value

    @classmethod
    def from_booster(
        cls,
        booster: "Booster",
        pred_parameter: Dict[str, Any]
    ) -> "_InnerPredictor":
        """Initialize an ``_InnerPredictor`` from a ``Booster``.

        Parameters
        ----------
        booster : Booster
            Booster.
        pred_parameter : dict
            Other parameters for the prediction.
        """
        out_cur_iter = ctypes.c_int(0)
        _safe_call(
            _LIB.LGBM_BoosterGetCurrentIteration(
                booster._handle,
                ctypes.byref(out_cur_iter)
            )
        )
        return cls(
            booster_handle=booster._handle,
            pandas_categorical=booster.pandas_categorical,
            pred_parameter=pred_parameter,
            manage_handle=False
        )

    @classmethod
    def from_model_file(
        cls,
        model_file: Union[str, Path],
        pred_parameter: Dict[str, Any]
    ) -> "_InnerPredictor":
        """Initialize an ``_InnerPredictor`` from a text file containing a LightGBM model.

        Parameters
        ----------
        model_file : str or pathlib.Path
            Path to the model file.
        pred_parameter : dict
            Other parameters for the prediction.
        """
        booster_handle = ctypes.c_void_p()
        out_num_iterations = ctypes.c_int(0)
        _safe_call(
            _LIB.LGBM_BoosterCreateFromModelfile(
                _c_str(str(model_file)),
                ctypes.byref(out_num_iterations),
                ctypes.byref(booster_handle)
            )
        )
        return cls(
            booster_handle=booster_handle,
            pandas_categorical=_load_pandas_categorical(file_name=model_file),
            pred_parameter=pred_parameter,
            manage_handle=True
        )

    def __del__(self) -> None:
        try:
            if self.__is_manage_handle:
                _safe_call(_LIB.LGBM_BoosterFree(self._handle))
        except AttributeError:
            pass

    def __getstate__(self) -> Dict[str, Any]:
        this = self.__dict__.copy()
        this.pop('handle', None)
        this.pop('_handle', None)
        return this

    def predict(
        self,
        data: _LGBM_PredictDataType,
        start_iteration: int = 0,
        num_iteration: int = -1,
        raw_score: bool = False,
        pred_leaf: bool = False,
        pred_contrib: bool = False,
        data_has_header: bool = False,
        validate_features: bool = False
    ) -> Union[np.ndarray, scipy.sparse.spmatrix, List[scipy.sparse.spmatrix]]:
        """Predict logic.

        Parameters
        ----------
        data : str, pathlib.Path, numpy array, pandas DataFrame, pyarrow Table, H2O DataTable's Frame or scipy.sparse
            Data source for prediction.
            If str or pathlib.Path, it represents the path to a text file (CSV, TSV, or LibSVM).
        start_iteration : int, optional (default=0)
            Start index of the iteration to predict.
        num_iteration : int, optional (default=-1)
            Iteration used for prediction.
        raw_score : bool, optional (default=False)
            Whether to predict raw scores.
        pred_leaf : bool, optional (default=False)
            Whether to predict leaf index.
        pred_contrib : bool, optional (default=False)
            Whether to predict feature contributions.
        data_has_header : bool, optional (default=False)
            Whether data has header.
            Used only for txt data.
        validate_features : bool, optional (default=False)
            If True, ensure that the features used to predict match the ones used to train.
            Used only if data is pandas DataFrame.

            .. versionadded:: 4.0.0

        Returns
        -------
        result : numpy array, scipy.sparse or list of scipy.sparse
            Prediction result.
            Can be sparse or a list of sparse objects (each element represents predictions for one class) for feature contributions (when ``pred_contrib=True``).
        """
        if isinstance(data, Dataset):
            raise TypeError("Cannot use Dataset instance for prediction, please use raw data instead")
        elif isinstance(data, pd_DataFrame) and validate_features:
            data_names = [str(x) for x in data.columns]
            ptr_names = (ctypes.c_char_p * len(data_names))()
            ptr_names[:] = [x.encode('utf-8') for x in data_names]
            _safe_call(
                _LIB.LGBM_BoosterValidateFeatureNames(
                    self._handle,
                    ptr_names,
                    ctypes.c_int(len(data_names)),
                )
            )

        if isinstance(data, pd_DataFrame):
            data = _data_from_pandas(
                data=data,
                feature_name="auto",
                categorical_feature="auto",
                pandas_categorical=self.pandas_categorical
            )[0]

        predict_type = _C_API_PREDICT_NORMAL
        if raw_score:
            predict_type = _C_API_PREDICT_RAW_SCORE
        if pred_leaf:
            predict_type = _C_API_PREDICT_LEAF_INDEX
        if pred_contrib:
            predict_type = _C_API_PREDICT_CONTRIB

        if isinstance(data, (str, Path)):
            with _TempFile() as f:
                _safe_call(_LIB.LGBM_BoosterPredictForFile(
                    self._handle,
                    _c_str(str(data)),
                    ctypes.c_int(data_has_header),
                    ctypes.c_int(predict_type),
                    ctypes.c_int(start_iteration),
                    ctypes.c_int(num_iteration),
                    _c_str(self.pred_parameter),
                    _c_str(f.name)))
                preds = np.loadtxt(f.name, dtype=np.float64)
                nrow = preds.shape[0]
        elif isinstance(data, scipy.sparse.csr_matrix):
            preds, nrow = self.__pred_for_csr(
                csr=data,
                start_iteration=start_iteration,
                num_iteration=num_iteration,
                predict_type=predict_type
            )
        elif isinstance(data, scipy.sparse.csc_matrix):
            preds, nrow = self.__pred_for_csc(
                csc=data,
                start_iteration=start_iteration,
                num_iteration=num_iteration,
                predict_type=predict_type
            )
        elif isinstance(data, np.ndarray):
            preds, nrow = self.__pred_for_np2d(
                mat=data,
                start_iteration=start_iteration,
                num_iteration=num_iteration,
                predict_type=predict_type
            )
        elif _is_pyarrow_table(data):
            preds, nrow = self.__pred_for_pyarrow_table(
                table=data,
                start_iteration=start_iteration,
                num_iteration=num_iteration,
                predict_type=predict_type
            )
        elif isinstance(data, list):
            try:
                data = np.array(data)
            except BaseException as err:
                raise ValueError('Cannot convert data list to numpy array.') from err
            preds, nrow = self.__pred_for_np2d(
                mat=data,
                start_iteration=start_iteration,
                num_iteration=num_iteration,
                predict_type=predict_type
            )
        elif isinstance(data, dt_DataTable):
            preds, nrow = self.__pred_for_np2d(
                mat=data.to_numpy(),
                start_iteration=start_iteration,
                num_iteration=num_iteration,
                predict_type=predict_type
            )
        else:
            try:
                _log_warning('Converting data to scipy sparse matrix.')
                csr = scipy.sparse.csr_matrix(data)
            except BaseException as err:
                raise TypeError(f'Cannot predict data for type {type(data).__name__}') from err
            preds, nrow = self.__pred_for_csr(
                csr=csr,
                start_iteration=start_iteration,
                num_iteration=num_iteration,
                predict_type=predict_type
            )
        if pred_leaf:
            preds = preds.astype(np.int32)
        is_sparse = isinstance(preds, scipy.sparse.spmatrix) or isinstance(preds, list)
        if not is_sparse and preds.size != nrow:
            if preds.size % nrow == 0:
                preds = preds.reshape(nrow, -1)
            else:
                raise ValueError(f'Length of predict result ({preds.size}) cannot be divide nrow ({nrow})')
        return preds

    def __get_num_preds(
        self,
        start_iteration: int,
        num_iteration: int,
        nrow: int,
        predict_type: int
    ) -> int:
        """Get size of prediction result."""
        if nrow > _MAX_INT32:
            raise LightGBMError('LightGBM cannot perform prediction for data '
                                f'with number of rows greater than MAX_INT32 ({_MAX_INT32}).\n'
                                'You can split your data into chunks '
                                'and then concatenate predictions for them')
        n_preds = ctypes.c_int64(0)
        _safe_call(_LIB.LGBM_BoosterCalcNumPredict(
            self._handle,
            ctypes.c_int(nrow),
            ctypes.c_int(predict_type),
            ctypes.c_int(start_iteration),
            ctypes.c_int(num_iteration),
            ctypes.byref(n_preds)))
        return n_preds.value

    def __inner_predict_np2d(
        self,
        mat: np.ndarray,
        start_iteration: int,
        num_iteration: int,
        predict_type: int,
        preds: Optional[np.ndarray]
    ) -> Tuple[np.ndarray, int]:
        if mat.dtype == np.float32 or mat.dtype == np.float64:
            data = np.array(mat.reshape(mat.size), dtype=mat.dtype, copy=False)
        else:  # change non-float data to float data, need to copy
            data = np.array(mat.reshape(mat.size), dtype=np.float32)
        ptr_data, type_ptr_data, _ = _c_float_array(data)
        n_preds = self.__get_num_preds(
            start_iteration=start_iteration,
            num_iteration=num_iteration,
            nrow=mat.shape[0],
            predict_type=predict_type
        )
        if preds is None:
            preds = np.empty(n_preds, dtype=np.float64)
        elif len(preds.shape) != 1 or len(preds) != n_preds:
            raise ValueError("Wrong length of pre-allocated predict array")
        out_num_preds = ctypes.c_int64(0)
        _safe_call(_LIB.LGBM_BoosterPredictForMat(
            self._handle,
            ptr_data,
            ctypes.c_int(type_ptr_data),
            ctypes.c_int32(mat.shape[0]),
            ctypes.c_int32(mat.shape[1]),
            ctypes.c_int(_C_API_IS_ROW_MAJOR),
            ctypes.c_int(predict_type),
            ctypes.c_int(start_iteration),
            ctypes.c_int(num_iteration),
            _c_str(self.pred_parameter),
            ctypes.byref(out_num_preds),
            preds.ctypes.data_as(ctypes.POINTER(ctypes.c_double))))
        if n_preds != out_num_preds.value:
            raise ValueError("Wrong length for predict results")
        return preds, mat.shape[0]

    def __pred_for_np2d(
        self,
        mat: np.ndarray,
        start_iteration: int,
        num_iteration: int,
        predict_type: int
    ) -> Tuple[np.ndarray, int]:
        """Predict for a 2-D numpy matrix."""
        if len(mat.shape) != 2:
            raise ValueError('Input numpy.ndarray or list must be 2 dimensional')

        nrow = mat.shape[0]
        if nrow > _MAX_INT32:
            sections = np.arange(start=_MAX_INT32, stop=nrow, step=_MAX_INT32)
            # __get_num_preds() cannot work with nrow > MAX_INT32, so calculate overall number of predictions piecemeal
            n_preds = [self.__get_num_preds(start_iteration, num_iteration, i, predict_type) for i in np.diff([0] + list(sections) + [nrow])]
            n_preds_sections = np.array([0] + n_preds, dtype=np.intp).cumsum()
            preds = np.empty(sum(n_preds), dtype=np.float64)
            for chunk, (start_idx_pred, end_idx_pred) in zip(np.array_split(mat, sections),
                                                             zip(n_preds_sections, n_preds_sections[1:])):
                # avoid memory consumption by arrays concatenation operations
                self.__inner_predict_np2d(
                    mat=chunk,
                    start_iteration=start_iteration,
                    num_iteration=num_iteration,
                    predict_type=predict_type,
                    preds=preds[start_idx_pred:end_idx_pred]
                )
            return preds, nrow
        else:
            return self.__inner_predict_np2d(
                mat=mat,
                start_iteration=start_iteration,
                num_iteration=num_iteration,
                predict_type=predict_type,
                preds=None
            )

    def __create_sparse_native(
        self,
        cs: Union[scipy.sparse.csc_matrix, scipy.sparse.csr_matrix],
        out_shape: np.ndarray,
        out_ptr_indptr: "ctypes._Pointer",
        out_ptr_indices: "ctypes._Pointer",
        out_ptr_data: "ctypes._Pointer",
        indptr_type: int,
        data_type: int,
        is_csr: bool
    ) -> Union[List[scipy.sparse.csc_matrix], List[scipy.sparse.csr_matrix]]:
        # create numpy array from output arrays
        data_indices_len = out_shape[0]
        indptr_len = out_shape[1]
        if indptr_type == _C_API_DTYPE_INT32:
            out_indptr = _cint32_array_to_numpy(cptr=out_ptr_indptr, length=indptr_len)
        elif indptr_type == _C_API_DTYPE_INT64:
            out_indptr = _cint64_array_to_numpy(cptr=out_ptr_indptr, length=indptr_len)
        else:
            raise TypeError("Expected int32 or int64 type for indptr")
        if data_type == _C_API_DTYPE_FLOAT32:
            out_data = _cfloat32_array_to_numpy(cptr=out_ptr_data, length=data_indices_len)
        elif data_type == _C_API_DTYPE_FLOAT64:
            out_data = _cfloat64_array_to_numpy(cptr=out_ptr_data, length=data_indices_len)
        else:
            raise TypeError("Expected float32 or float64 type for data")
        out_indices = _cint32_array_to_numpy(cptr=out_ptr_indices, length=data_indices_len)
        # break up indptr based on number of rows (note more than one matrix in multiclass case)
        per_class_indptr_shape = cs.indptr.shape[0]
        # for CSC there is extra column added
        if not is_csr:
            per_class_indptr_shape += 1
        out_indptr_arrays = np.split(out_indptr, out_indptr.shape[0] / per_class_indptr_shape)
        # reformat output into a csr or csc matrix or list of csr or csc matrices
        cs_output_matrices = []
        offset = 0
        for cs_indptr in out_indptr_arrays:
            matrix_indptr_len = cs_indptr[cs_indptr.shape[0] - 1]
            cs_indices = out_indices[offset + cs_indptr[0]:offset + matrix_indptr_len]
            cs_data = out_data[offset + cs_indptr[0]:offset + matrix_indptr_len]
            offset += matrix_indptr_len
            # same shape as input csr or csc matrix except extra column for expected value
            cs_shape = [cs.shape[0], cs.shape[1] + 1]
            # note: make sure we copy data as it will be deallocated next
            if is_csr:
                cs_output_matrices.append(scipy.sparse.csr_matrix((cs_data, cs_indices, cs_indptr), cs_shape))
            else:
                cs_output_matrices.append(scipy.sparse.csc_matrix((cs_data, cs_indices, cs_indptr), cs_shape))
        # free the temporary native indptr, indices, and data
        _safe_call(_LIB.LGBM_BoosterFreePredictSparse(out_ptr_indptr, out_ptr_indices, out_ptr_data,
                                                      ctypes.c_int(indptr_type), ctypes.c_int(data_type)))
        if len(cs_output_matrices) == 1:
            return cs_output_matrices[0]
        return cs_output_matrices

    def __inner_predict_csr(
        self,
        csr: scipy.sparse.csr_matrix,
        start_iteration: int,
        num_iteration: int,
        predict_type: int,
        preds: Optional[np.ndarray]
    ) -> Tuple[np.ndarray, int]:
        nrow = len(csr.indptr) - 1
        n_preds = self.__get_num_preds(
            start_iteration=start_iteration,
            num_iteration=num_iteration,
            nrow=nrow,
            predict_type=predict_type
        )
        if preds is None:
            preds = np.empty(n_preds, dtype=np.float64)
        elif len(preds.shape) != 1 or len(preds) != n_preds:
            raise ValueError("Wrong length of pre-allocated predict array")
        out_num_preds = ctypes.c_int64(0)

        ptr_indptr, type_ptr_indptr, _ = _c_int_array(csr.indptr)
        ptr_data, type_ptr_data, _ = _c_float_array(csr.data)

        assert csr.shape[1] <= _MAX_INT32
        csr_indices = csr.indices.astype(np.int32, copy=False)

        _safe_call(_LIB.LGBM_BoosterPredictForCSR(
            self._handle,
            ptr_indptr,
            ctypes.c_int(type_ptr_indptr),
            csr_indices.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)),
            ptr_data,
            ctypes.c_int(type_ptr_data),
            ctypes.c_int64(len(csr.indptr)),
            ctypes.c_int64(len(csr.data)),
            ctypes.c_int64(csr.shape[1]),
            ctypes.c_int(predict_type),
            ctypes.c_int(start_iteration),
            ctypes.c_int(num_iteration),
            _c_str(self.pred_parameter),
            ctypes.byref(out_num_preds),
            preds.ctypes.data_as(ctypes.POINTER(ctypes.c_double))))
        if n_preds != out_num_preds.value:
            raise ValueError("Wrong length for predict results")
        return preds, nrow

    def __inner_predict_csr_sparse(
        self,
        csr: scipy.sparse.csr_matrix,
        start_iteration: int,
        num_iteration: int,
        predict_type: int
    ) -> Tuple[Union[List[scipy.sparse.csc_matrix], List[scipy.sparse.csr_matrix]], int]:
        ptr_indptr, type_ptr_indptr, __ = _c_int_array(csr.indptr)
        ptr_data, type_ptr_data, _ = _c_float_array(csr.data)
        csr_indices = csr.indices.astype(np.int32, copy=False)
        matrix_type = _C_API_MATRIX_TYPE_CSR
        out_ptr_indptr: _ctypes_int_ptr
        if type_ptr_indptr == _C_API_DTYPE_INT32:
            out_ptr_indptr = ctypes.POINTER(ctypes.c_int32)()
        else:
            out_ptr_indptr = ctypes.POINTER(ctypes.c_int64)()
        out_ptr_indices = ctypes.POINTER(ctypes.c_int32)()
        out_ptr_data: _ctypes_float_ptr
        if type_ptr_data == _C_API_DTYPE_FLOAT32:
            out_ptr_data = ctypes.POINTER(ctypes.c_float)()
        else:
            out_ptr_data = ctypes.POINTER(ctypes.c_double)()
        out_shape = np.empty(2, dtype=np.int64)
        _safe_call(_LIB.LGBM_BoosterPredictSparseOutput(
            self._handle,
            ptr_indptr,
            ctypes.c_int(type_ptr_indptr),
            csr_indices.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)),
            ptr_data,
            ctypes.c_int(type_ptr_data),
            ctypes.c_int64(len(csr.indptr)),
            ctypes.c_int64(len(csr.data)),
            ctypes.c_int64(csr.shape[1]),
            ctypes.c_int(predict_type),
            ctypes.c_int(start_iteration),
            ctypes.c_int(num_iteration),
            _c_str(self.pred_parameter),
            ctypes.c_int(matrix_type),
            out_shape.ctypes.data_as(ctypes.POINTER(ctypes.c_int64)),
            ctypes.byref(out_ptr_indptr),
            ctypes.byref(out_ptr_indices),
            ctypes.byref(out_ptr_data)))
        matrices = self.__create_sparse_native(
            cs=csr,
            out_shape=out_shape,
            out_ptr_indptr=out_ptr_indptr,
            out_ptr_indices=out_ptr_indices,
            out_ptr_data=out_ptr_data,
            indptr_type=type_ptr_indptr,
            data_type=type_ptr_data,
            is_csr=True
        )
        nrow = len(csr.indptr) - 1
        return matrices, nrow

    def __pred_for_csr(
        self,
        csr: scipy.sparse.csr_matrix,
        start_iteration: int,
        num_iteration: int,
        predict_type: int
    ) -> Tuple[np.ndarray, int]:
        """Predict for a CSR data."""
        if predict_type == _C_API_PREDICT_CONTRIB:
            return self.__inner_predict_csr_sparse(
                csr=csr,
                start_iteration=start_iteration,
                num_iteration=num_iteration,
                predict_type=predict_type
            )
        nrow = len(csr.indptr) - 1
        if nrow > _MAX_INT32:
            sections = [0] + list(np.arange(start=_MAX_INT32, stop=nrow, step=_MAX_INT32)) + [nrow]
            # __get_num_preds() cannot work with nrow > MAX_INT32, so calculate overall number of predictions piecemeal
            n_preds = [self.__get_num_preds(start_iteration, num_iteration, i, predict_type) for i in np.diff(sections)]
            n_preds_sections = np.array([0] + n_preds, dtype=np.intp).cumsum()
            preds = np.empty(sum(n_preds), dtype=np.float64)
            for (start_idx, end_idx), (start_idx_pred, end_idx_pred) in zip(zip(sections, sections[1:]),
                                                                            zip(n_preds_sections, n_preds_sections[1:])):
                # avoid memory consumption by arrays concatenation operations
                self.__inner_predict_csr(
                    csr=csr[start_idx:end_idx],
                    start_iteration=start_iteration,
                    num_iteration=num_iteration,
                    predict_type=predict_type,
                    preds=preds[start_idx_pred:end_idx_pred]
                )
            return preds, nrow
        else:
            return self.__inner_predict_csr(
                csr=csr,
                start_iteration=start_iteration,
                num_iteration=num_iteration,
                predict_type=predict_type,
                preds=None
            )

    def __inner_predict_sparse_csc(
        self,
        csc: scipy.sparse.csc_matrix,
        start_iteration: int,
        num_iteration: int,
        predict_type: int
    ):
        ptr_indptr, type_ptr_indptr, __ = _c_int_array(csc.indptr)
        ptr_data, type_ptr_data, _ = _c_float_array(csc.data)
        csc_indices = csc.indices.astype(np.int32, copy=False)
        matrix_type = _C_API_MATRIX_TYPE_CSC
        out_ptr_indptr: _ctypes_int_ptr
        if type_ptr_indptr == _C_API_DTYPE_INT32:
            out_ptr_indptr = ctypes.POINTER(ctypes.c_int32)()
        else:
            out_ptr_indptr = ctypes.POINTER(ctypes.c_int64)()
        out_ptr_indices = ctypes.POINTER(ctypes.c_int32)()
        out_ptr_data: _ctypes_float_ptr
        if type_ptr_data == _C_API_DTYPE_FLOAT32:
            out_ptr_data = ctypes.POINTER(ctypes.c_float)()
        else:
            out_ptr_data = ctypes.POINTER(ctypes.c_double)()
        out_shape = np.empty(2, dtype=np.int64)
        _safe_call(_LIB.LGBM_BoosterPredictSparseOutput(
            self._handle,
            ptr_indptr,
            ctypes.c_int(type_ptr_indptr),
            csc_indices.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)),
            ptr_data,
            ctypes.c_int(type_ptr_data),
            ctypes.c_int64(len(csc.indptr)),
            ctypes.c_int64(len(csc.data)),
            ctypes.c_int64(csc.shape[0]),
            ctypes.c_int(predict_type),
            ctypes.c_int(start_iteration),
            ctypes.c_int(num_iteration),
            _c_str(self.pred_parameter),
            ctypes.c_int(matrix_type),
            out_shape.ctypes.data_as(ctypes.POINTER(ctypes.c_int64)),
            ctypes.byref(out_ptr_indptr),
            ctypes.byref(out_ptr_indices),
            ctypes.byref(out_ptr_data)))
        matrices = self.__create_sparse_native(
            cs=csc,
            out_shape=out_shape,
            out_ptr_indptr=out_ptr_indptr,
            out_ptr_indices=out_ptr_indices,
            out_ptr_data=out_ptr_data,
            indptr_type=type_ptr_indptr,
            data_type=type_ptr_data,
            is_csr=False
        )
        nrow = csc.shape[0]
        return matrices, nrow

    def __pred_for_csc(
        self,
        csc: scipy.sparse.csc_matrix,
        start_iteration: int,
        num_iteration: int,
        predict_type: int
    ) -> Tuple[np.ndarray, int]:
        """Predict for a CSC data."""
        nrow = csc.shape[0]
        if nrow > _MAX_INT32:
            return self.__pred_for_csr(
                csr=csc.tocsr(),
                start_iteration=start_iteration,
                num_iteration=num_iteration,
                predict_type=predict_type
            )
        if predict_type == _C_API_PREDICT_CONTRIB:
            return self.__inner_predict_sparse_csc(
                csc=csc,
                start_iteration=start_iteration,
                num_iteration=num_iteration,
                predict_type=predict_type
            )
        n_preds = self.__get_num_preds(
            start_iteration=start_iteration,
            num_iteration=num_iteration,
            nrow=nrow,
            predict_type=predict_type
        )
        preds = np.empty(n_preds, dtype=np.float64)
        out_num_preds = ctypes.c_int64(0)

        ptr_indptr, type_ptr_indptr, __ = _c_int_array(csc.indptr)
        ptr_data, type_ptr_data, _ = _c_float_array(csc.data)

        assert csc.shape[0] <= _MAX_INT32
        csc_indices = csc.indices.astype(np.int32, copy=False)

        _safe_call(_LIB.LGBM_BoosterPredictForCSC(
            self._handle,
            ptr_indptr,
            ctypes.c_int(type_ptr_indptr),
            csc_indices.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)),
            ptr_data,
            ctypes.c_int(type_ptr_data),
            ctypes.c_int64(len(csc.indptr)),
            ctypes.c_int64(len(csc.data)),
            ctypes.c_int64(csc.shape[0]),
            ctypes.c_int(predict_type),
            ctypes.c_int(start_iteration),
            ctypes.c_int(num_iteration),
            _c_str(self.pred_parameter),
            ctypes.byref(out_num_preds),
            preds.ctypes.data_as(ctypes.POINTER(ctypes.c_double))))
        if n_preds != out_num_preds.value:
            raise ValueError("Wrong length for predict results")
        return preds, nrow
    
    def __pred_for_pyarrow_table(
        self,
        table: pa_Table,
        start_iteration: int,
        num_iteration: int,
        predict_type: int
    ) -> Tuple[np.ndarray, int]:
        """Predict for a PyArrow table."""
        if not PYARROW_INSTALLED:
            raise LightGBMError("Cannot predict from Arrow without `pyarrow` installed.")

        # Check that the input is valid: we only handle numbers (for now)
        if not all(arrow_is_integer(t) or arrow_is_floating(t) for t in table.schema.types):
            raise ValueError("Arrow table may only have integer or floating point datatypes")

        # Prepare prediction output array
        n_preds = self.__get_num_preds(
            start_iteration=start_iteration,
            num_iteration=num_iteration,
            nrow=table.num_rows,
            predict_type=predict_type
        )
        preds = np.empty(n_preds, dtype=np.float64)
        out_num_preds = ctypes.c_int64(0)

        # Export Arrow table to C and run prediction
        c_array = _export_arrow_to_c(table)
        _safe_call(_LIB.LGBM_BoosterPredictForArrow(
            self._handle,
            ctypes.c_int64(c_array.n_chunks),
            ctypes.c_void_p(c_array.chunks_ptr),
            ctypes.c_void_p(c_array.schema_ptr),
            ctypes.c_int(predict_type),
            ctypes.c_int(start_iteration),
            ctypes.c_int(num_iteration),
            _c_str(self.pred_parameter),
            ctypes.byref(out_num_preds),
            preds.ctypes.data_as(ctypes.POINTER(ctypes.c_double))))
        if n_preds != out_num_preds.value:
            raise ValueError("Wrong length for predict results")
        return preds, table.num_rows

    def current_iteration(self) -> int:
        """Get the index of the current iteration.

        Returns
        -------
        cur_iter : int
            The index of the current iteration.
        """
        out_cur_iter = ctypes.c_int(0)
        _safe_call(_LIB.LGBM_BoosterGetCurrentIteration(
            self._handle,
            ctypes.byref(out_cur_iter)))
        return out_cur_iter.value


class Dataset:
    """Dataset in LightGBM."""

    def __init__(
        self,
        data: _LGBM_TrainDataType,
        label: Optional[_LGBM_LabelType] = None,
        reference: Optional["Dataset"] = None,
        weight: Optional[_LGBM_WeightType] = None,
        group: Optional[_LGBM_GroupType] = None,
        init_score: Optional[_LGBM_InitScoreType] = None,
        feature_name: _LGBM_FeatureNameConfiguration = 'auto',
        categorical_feature: _LGBM_CategoricalFeatureConfiguration = 'auto',
        params: Optional[Dict[str, Any]] = None,
        free_raw_data: bool = True,
        position: Optional[_LGBM_PositionType] = None,
    ):
        """Initialize Dataset.

        Parameters
        ----------
        data : str, pathlib.Path, numpy array, pandas DataFrame, H2O DataTable's Frame, scipy.sparse, Sequence, list of Sequence, list of numpy array or pyarrow Table
            Data source of Dataset.
            If str or pathlib.Path, it represents the path to a text file (CSV, TSV, or LibSVM) or a LightGBM Dataset binary file.
        label : list, numpy 1-D array, pandas Series / one-column DataFrame, pyarrow Array, pyarrow ChunkedArray or None, optional (default=None)
            Label of the data.
        reference : Dataset or None, optional (default=None)
            If this is Dataset for validation, training data should be used as reference.
        weight : list, numpy 1-D array, pandas Series, pyarrow Array, pyarrow ChunkedArray or None, optional (default=None)
            Weight for each instance. Weights should be non-negative.
        group : list, numpy 1-D array, pandas Series, pyarrow Array, pyarrow ChunkedArray or None, optional (default=None)
            Group/query data.
            Only used in the learning-to-rank task.
            sum(group) = n_samples.
            For example, if you have a 100-document dataset with ``group = [10, 20, 40, 10, 10, 10]``, that means that you have 6 groups,
            where the first 10 records are in the first group, records 11-30 are in the second group, records 31-70 are in the third group, etc.
        init_score : list, list of lists (for multi-class task), numpy array, pandas Series, pandas DataFrame (for multi-class task), pyarrow Array, pyarrow ChunkedArray, pyarrow Table (for multi-class task) or None, optional (default=None)
            Init score for Dataset.
        feature_name : list of str, or 'auto', optional (default="auto")
            Feature names.
            If 'auto' and data is pandas DataFrame or pyarrow Table, data columns names are used.
        categorical_feature : list of str or int, or 'auto', optional (default="auto")
            Categorical features.
            If list of int, interpreted as indices.
            If list of str, interpreted as feature names (need to specify ``feature_name`` as well).
            If 'auto' and data is pandas DataFrame, pandas unordered categorical columns are used.
            All values in categorical features will be cast to int32 and thus should be less than int32 max value (2147483647).
            Large values could be memory consuming. Consider using consecutive integers starting from zero.
            All negative values in categorical features will be treated as missing values.
            The output cannot be monotonically constrained with respect to a categorical feature.
            Floating point numbers in categorical features will be rounded towards 0.
        params : dict or None, optional (default=None)
            Other parameters for Dataset.
        free_raw_data : bool, optional (default=True)
            If True, raw data is freed after constructing inner Dataset.
        position : numpy 1-D array, pandas Series or None, optional (default=None)
            Position of items used in unbiased learning-to-rank task.
        """
        self._handle: Optional[_DatasetHandle] = None
        self.data = data
        self.label = label
        self.reference = reference
        self.weight = weight
        self.group = group
        self.position = position
        self.init_score = init_score
        self.feature_name: _LGBM_FeatureNameConfiguration = feature_name
        self.categorical_feature: _LGBM_CategoricalFeatureConfiguration = categorical_feature
        self.params = deepcopy(params)
        self.free_raw_data = free_raw_data
        self.used_indices: Optional[List[int]] = None
        self._need_slice = True
        self._predictor: Optional[_InnerPredictor] = None
        self.pandas_categorical: Optional[List[List]] = None
        self._params_back_up = None
        self.version = 0
        self._start_row = 0  # Used when pushing rows one by one.

    def __del__(self) -> None:
        try:
            self._free_handle()
        except AttributeError:
            pass

    def _create_sample_indices(self, total_nrow: int) -> np.ndarray:
        """Get an array of randomly chosen indices from this ``Dataset``.

        Indices are sampled without replacement.

        Parameters
        ----------
        total_nrow : int
            Total number of rows to sample from.
            If this value is greater than the value of parameter ``bin_construct_sample_cnt``, only ``bin_construct_sample_cnt`` indices will be used.
            If Dataset has multiple input data, this should be the sum of rows of every file.

        Returns
        -------
        indices : numpy array
            Indices for sampled data.
        """
        param_str = _param_dict_to_str(self.get_params())
        sample_cnt = _get_sample_count(total_nrow, param_str)
        indices = np.empty(sample_cnt, dtype=np.int32)
        ptr_data, _, _ = _c_int_array(indices)
        actual_sample_cnt = ctypes.c_int32(0)

        _safe_call(_LIB.LGBM_SampleIndices(
            ctypes.c_int32(total_nrow),
            _c_str(param_str),
            ptr_data,
            ctypes.byref(actual_sample_cnt),
        ))
        assert sample_cnt == actual_sample_cnt.value
        return indices

    def _init_from_ref_dataset(
        self,
        total_nrow: int,
        ref_dataset: _DatasetHandle
    ) -> 'Dataset':
        """Create dataset from a reference dataset.

        Parameters
        ----------
        total_nrow : int
            Number of rows expected to add to dataset.
        ref_dataset : object
            Handle of reference dataset to extract metadata from.

        Returns
        -------
        self : Dataset
            Constructed Dataset object.
        """
        self._handle = ctypes.c_void_p()
        _safe_call(_LIB.LGBM_DatasetCreateByReference(
            ref_dataset,
            ctypes.c_int64(total_nrow),
            ctypes.byref(self._handle),
        ))
        return self

    def _init_from_sample(
        self,
        sample_data: List[np.ndarray],
        sample_indices: List[np.ndarray],
        sample_cnt: int,
        total_nrow: int,
    ) -> "Dataset":
        """Create Dataset from sampled data structures.

        Parameters
        ----------
        sample_data : list of numpy array
            Sample data for each column.
        sample_indices : list of numpy array
            Sample data row index for each column.
        sample_cnt : int
            Number of samples.
        total_nrow : int
            Total number of rows for all input files.

        Returns
        -------
        self : Dataset
            Constructed Dataset object.
        """
        ncol = len(sample_indices)
        assert len(sample_data) == ncol, "#sample data column != #column indices"

        for i in range(ncol):
            if sample_data[i].dtype != np.double:
                raise ValueError(f"sample_data[{i}] type {sample_data[i].dtype} is not double")
            if sample_indices[i].dtype != np.int32:
                raise ValueError(f"sample_indices[{i}] type {sample_indices[i].dtype} is not int32")

        # c type: double**
        # each double* element points to start of each column of sample data.
        sample_col_ptr: _ctypes_float_array = (ctypes.POINTER(ctypes.c_double) * ncol)()
        # c type int**
        # each int* points to start of indices for each column
        indices_col_ptr: _ctypes_int_array = (ctypes.POINTER(ctypes.c_int32) * ncol)()
        for i in range(ncol):
            sample_col_ptr[i] = _c_float_array(sample_data[i])[0]
            indices_col_ptr[i] = _c_int_array(sample_indices[i])[0]

        num_per_col = np.array([len(d) for d in sample_indices], dtype=np.int32)
        num_per_col_ptr, _, _ = _c_int_array(num_per_col)

        self._handle = ctypes.c_void_p()
        params_str = _param_dict_to_str(self.get_params())
        _safe_call(_LIB.LGBM_DatasetCreateFromSampledColumn(
            ctypes.cast(sample_col_ptr, ctypes.POINTER(ctypes.POINTER(ctypes.c_double))),
            ctypes.cast(indices_col_ptr, ctypes.POINTER(ctypes.POINTER(ctypes.c_int32))),
            ctypes.c_int32(ncol),
            num_per_col_ptr,
            ctypes.c_int32(sample_cnt),
            ctypes.c_int32(total_nrow),
            ctypes.c_int64(total_nrow),
            _c_str(params_str),
            ctypes.byref(self._handle),
        ))
        return self

    def _push_rows(self, data: np.ndarray) -> 'Dataset':
        """Add rows to Dataset.

        Parameters
        ----------
        data : numpy 1-D array
            New data to add to the Dataset.

        Returns
        -------
        self : Dataset
            Dataset object.
        """
        nrow, ncol = data.shape
        data = data.reshape(data.size)
        data_ptr, data_type, _ = _c_float_array(data)

        _safe_call(_LIB.LGBM_DatasetPushRows(
            self._handle,
            data_ptr,
            data_type,
            ctypes.c_int32(nrow),
            ctypes.c_int32(ncol),
            ctypes.c_int32(self._start_row),
        ))
        self._start_row += nrow
        return self

    def get_params(self) -> Dict[str, Any]:
        """Get the used parameters in the Dataset.

        Returns
        -------
        params : dict
            The used parameters in this Dataset object.
        """
        if self.params is not None:
            # no min_data, nthreads and verbose in this function
            dataset_params = _ConfigAliases.get("bin_construct_sample_cnt",
                                                "categorical_feature",
                                                "data_random_seed",
                                                "enable_bundle",
                                                "feature_pre_filter",
                                                "forcedbins_filename",
                                                "group_column",
                                                "header",
                                                "ignore_column",
                                                "is_enable_sparse",
                                                "label_column",
                                                "linear_tree",
                                                "max_bin",
                                                "max_bin_by_feature",
                                                "min_data_in_bin",
                                                "pre_partition",
                                                "precise_float_parser",
                                                "two_round",
                                                "use_missing",
                                                "weight_column",
                                                "zero_as_missing")
            return {k: v for k, v in self.params.items() if k in dataset_params}
        else:
            return {}

    def _free_handle(self) -> "Dataset":
        if self._handle is not None:
            _safe_call(_LIB.LGBM_DatasetFree(self._handle))
            self._handle = None
        self._need_slice = True
        if self.used_indices is not None:
            self.data = None
        return self

    def _set_init_score_by_predictor(
        self,
        predictor: Optional[_InnerPredictor],
        data: _LGBM_TrainDataType,
        used_indices: Optional[Union[List[int], np.ndarray]]
    ) -> "Dataset":
        data_has_header = False
        if isinstance(data, (str, Path)) and self.params is not None:
            # check data has header or not
            data_has_header = any(self.params.get(alias, False) for alias in _ConfigAliases.get("header"))
        num_data = self.num_data()
        if predictor is not None:
            init_score: Union[np.ndarray, scipy.sparse.spmatrix] = predictor.predict(
                data=data,
                raw_score=True,
                data_has_header=data_has_header
            )
            init_score = init_score.ravel()
            if used_indices is not None:
                assert not self._need_slice
                if isinstance(data, (str, Path)):
                    sub_init_score = np.empty(num_data * predictor.num_class, dtype=np.float64)
                    assert num_data == len(used_indices)
                    for i in range(len(used_indices)):
                        for j in range(predictor.num_class):
                            sub_init_score[i * predictor.num_class + j] = init_score[used_indices[i] * predictor.num_class + j]
                    init_score = sub_init_score
            if predictor.num_class > 1:
                # need to regroup init_score
                new_init_score = np.empty(init_score.size, dtype=np.float64)
                for i in range(num_data):
                    for j in range(predictor.num_class):
                        new_init_score[j * num_data + i] = init_score[i * predictor.num_class + j]
                init_score = new_init_score
        elif self.init_score is not None:
            init_score = np.full_like(self.init_score, fill_value=0.0, dtype=np.float64)
        else:
            return self
        self.set_init_score(init_score)
        return self

    def _lazy_init(
        self,
        data: Optional[_LGBM_TrainDataType],
        label: Optional[_LGBM_LabelType],
        reference: Optional["Dataset"],
        weight: Optional[_LGBM_WeightType],
        group: Optional[_LGBM_GroupType],
        init_score: Optional[_LGBM_InitScoreType],
        predictor: Optional[_InnerPredictor],
        feature_name: _LGBM_FeatureNameConfiguration,
        categorical_feature: _LGBM_CategoricalFeatureConfiguration,
        params: Optional[Dict[str, Any]],
        position: Optional[_LGBM_PositionType]
    ) -> "Dataset":
        if data is None:
            self._handle = None
            return self
        if reference is not None:
            self.pandas_categorical = reference.pandas_categorical
            categorical_feature = reference.categorical_feature
        if isinstance(data, pd_DataFrame):
            data, feature_name, categorical_feature, self.pandas_categorical = _data_from_pandas(
                data=data,
                feature_name=feature_name,
                categorical_feature=categorical_feature,
                pandas_categorical=self.pandas_categorical
            )

        # process for args
        params = {} if params is None else params
        args_names = inspect.signature(self.__class__._lazy_init).parameters.keys()
        for key in params.keys():
            if key in args_names:
                _log_warning(f'{key} keyword has been found in `params` and will be ignored.\n'
                             f'Please use {key} argument of the Dataset constructor to pass this parameter.')
        # get categorical features
        if isinstance(categorical_feature, list):
            categorical_indices = set()
            feature_dict = {}
            if isinstance(feature_name, list):
                feature_dict = {name: i for i, name in enumerate(feature_name)}
            for name in categorical_feature:
                if isinstance(name, str) and name in feature_dict:
                    categorical_indices.add(feature_dict[name])
                elif isinstance(name, int):
                    categorical_indices.add(name)
                else:
                    raise TypeError(f"Wrong type({type(name).__name__}) or unknown name({name}) in categorical_feature")
            if categorical_indices:
                for cat_alias in _ConfigAliases.get("categorical_feature"):
                    if cat_alias in params:
                        # If the params[cat_alias] is equal to categorical_indices, do not report the warning.
                        if not (isinstance(params[cat_alias], list) and set(params[cat_alias]) == categorical_indices):
                            _log_warning(f'{cat_alias} in param dict is overridden.')
                        params.pop(cat_alias, None)
                params['categorical_column'] = sorted(categorical_indices)

        params_str = _param_dict_to_str(params)
        self.params = params
        # process for reference dataset
        ref_dataset = None
        if isinstance(reference, Dataset):
            ref_dataset = reference.construct()._handle
        elif reference is not None:
            raise TypeError('Reference dataset should be None or dataset instance')
        # start construct data
        if isinstance(data, (str, Path)):
            self._handle = ctypes.c_void_p()
            _safe_call(_LIB.LGBM_DatasetCreateFromFile(
                _c_str(str(data)),
                _c_str(params_str),
                ref_dataset,
                ctypes.byref(self._handle)))
        elif isinstance(data, scipy.sparse.csr_matrix):
            self.__init_from_csr(data, params_str, ref_dataset)
        elif isinstance(data, scipy.sparse.csc_matrix):
            self.__init_from_csc(data, params_str, ref_dataset)
        elif isinstance(data, np.ndarray):
            self.__init_from_np2d(data, params_str, ref_dataset)
        elif _is_pyarrow_table(data):
            self.__init_from_pyarrow_table(data, params_str, ref_dataset)
            feature_name = data.column_names
        elif isinstance(data, list) and len(data) > 0:
            if _is_list_of_numpy_arrays(data):
                self.__init_from_list_np2d(data, params_str, ref_dataset)
            elif _is_list_of_sequences(data):
                self.__init_from_seqs(data, ref_dataset)
            else:
                raise TypeError('Data list can only be of ndarray or Sequence')
        elif isinstance(data, Sequence):
            self.__init_from_seqs([data], ref_dataset)
        elif isinstance(data, dt_DataTable):
            self.__init_from_np2d(data.to_numpy(), params_str, ref_dataset)
        else:
            try:
                csr = scipy.sparse.csr_matrix(data)
                self.__init_from_csr(csr, params_str, ref_dataset)
            except BaseException as err:
                raise TypeError(f'Cannot initialize Dataset from {type(data).__name__}') from err
        if label is not None:
            self.set_label(label)
        if self.get_label() is None:
            raise ValueError("Label should not be None")
        if weight is not None:
            self.set_weight(weight)
        if group is not None:
            self.set_group(group)
        if position is not None:
            self.set_position(position)
        if isinstance(predictor, _InnerPredictor):
            if self._predictor is None and init_score is not None:
                _log_warning("The init_score will be overridden by the prediction of init_model.")
            self._set_init_score_by_predictor(
                predictor=predictor,
                data=data,
                used_indices=None
            )
        elif init_score is not None:
            self.set_init_score(init_score)
        elif predictor is not None:
            raise TypeError(f'Wrong predictor type {type(predictor).__name__}')
        # set feature names
        return self.set_feature_name(feature_name)

    @staticmethod
    def _yield_row_from_seqlist(seqs: List[Sequence], indices: Iterable[int]):
        offset = 0
        seq_id = 0
        seq = seqs[seq_id]
        for row_id in indices:
            assert row_id >= offset, "sample indices are expected to be monotonic"
            while row_id >= offset + len(seq):
                offset += len(seq)
                seq_id += 1
                seq = seqs[seq_id]
            id_in_seq = row_id - offset
            row = seq[id_in_seq]
            yield row if row.flags['OWNDATA'] else row.copy()

    def __sample(self, seqs: List[Sequence], total_nrow: int) -> Tuple[List[np.ndarray], List[np.ndarray]]:
        """Sample data from seqs.

        Mimics behavior in c_api.cpp:LGBM_DatasetCreateFromMats()

        Returns
        -------
            sampled_rows, sampled_row_indices
        """
        indices = self._create_sample_indices(total_nrow)

        # Select sampled rows, transpose to column order.
        sampled = np.array(list(self._yield_row_from_seqlist(seqs, indices)))
        sampled = sampled.T

        filtered = []
        filtered_idx = []
        sampled_row_range = np.arange(len(indices), dtype=np.int32)
        for col in sampled:
            col_predicate = (np.abs(col) > ZERO_THRESHOLD) | np.isnan(col)
            filtered_col = col[col_predicate]
            filtered_row_idx = sampled_row_range[col_predicate]

            filtered.append(filtered_col)
            filtered_idx.append(filtered_row_idx)

        return filtered, filtered_idx

    def __init_from_seqs(
        self,
        seqs: List[Sequence],
        ref_dataset: Optional[_DatasetHandle]
    ) -> "Dataset":
        """
        Initialize data from list of Sequence objects.

        Sequence: Generic Data Access Object
            Supports random access and access by batch if properly defined by user

        Data scheme uniformity are trusted, not checked
        """
        total_nrow = sum(len(seq) for seq in seqs)

        # create validation dataset from ref_dataset
        if ref_dataset is not None:
            self._init_from_ref_dataset(total_nrow, ref_dataset)
        else:
            param_str = _param_dict_to_str(self.get_params())
            sample_cnt = _get_sample_count(total_nrow, param_str)

            sample_data, col_indices = self.__sample(seqs, total_nrow)
            self._init_from_sample(sample_data, col_indices, sample_cnt, total_nrow)

        for seq in seqs:
            nrow = len(seq)
            batch_size = getattr(seq, 'batch_size', None) or Sequence.batch_size
            for start in range(0, nrow, batch_size):
                end = min(start + batch_size, nrow)
                self._push_rows(seq[start:end])
        return self

    def __init_from_np2d(
        self,
        mat: np.ndarray,
        params_str: str,
        ref_dataset: Optional[_DatasetHandle]
    ) -> "Dataset":
        """Initialize data from a 2-D numpy matrix."""
        if len(mat.shape) != 2:
            raise ValueError('Input numpy.ndarray must be 2 dimensional')

        self._handle = ctypes.c_void_p()
        if mat.dtype == np.float32 or mat.dtype == np.float64:
            data = np.array(mat.reshape(mat.size), dtype=mat.dtype, copy=False)
        else:  # change non-float data to float data, need to copy
            data = np.array(mat.reshape(mat.size), dtype=np.float32)

        ptr_data, type_ptr_data, _ = _c_float_array(data)
        _safe_call(_LIB.LGBM_DatasetCreateFromMat(
            ptr_data,
            ctypes.c_int(type_ptr_data),
            ctypes.c_int32(mat.shape[0]),
            ctypes.c_int32(mat.shape[1]),
            ctypes.c_int(_C_API_IS_ROW_MAJOR),
            _c_str(params_str),
            ref_dataset,
            ctypes.byref(self._handle)))
        return self

    def __init_from_list_np2d(
        self,
        mats: List[np.ndarray],
        params_str: str,
        ref_dataset: Optional[_DatasetHandle]
    ) -> "Dataset":
        """Initialize data from a list of 2-D numpy matrices."""
        ncol = mats[0].shape[1]
        nrow = np.empty((len(mats),), np.int32)
        ptr_data: _ctypes_float_array
        if mats[0].dtype == np.float64:
            ptr_data = (ctypes.POINTER(ctypes.c_double) * len(mats))()
        else:
            ptr_data = (ctypes.POINTER(ctypes.c_float) * len(mats))()

        holders = []
        type_ptr_data = -1

        for i, mat in enumerate(mats):
            if len(mat.shape) != 2:
                raise ValueError('Input numpy.ndarray must be 2 dimensional')

            if mat.shape[1] != ncol:
                raise ValueError('Input arrays must have same number of columns')

            nrow[i] = mat.shape[0]

            if mat.dtype == np.float32 or mat.dtype == np.float64:
                mats[i] = np.array(mat.reshape(mat.size), dtype=mat.dtype, copy=False)
            else:  # change non-float data to float data, need to copy
                mats[i] = np.array(mat.reshape(mat.size), dtype=np.float32)

            chunk_ptr_data, chunk_type_ptr_data, holder = _c_float_array(mats[i])
            if type_ptr_data != -1 and chunk_type_ptr_data != type_ptr_data:
                raise ValueError('Input chunks must have same type')
            ptr_data[i] = chunk_ptr_data
            type_ptr_data = chunk_type_ptr_data
            holders.append(holder)

        self._handle = ctypes.c_void_p()
        _safe_call(_LIB.LGBM_DatasetCreateFromMats(
            ctypes.c_int32(len(mats)),
            ctypes.cast(ptr_data, ctypes.POINTER(ctypes.POINTER(ctypes.c_double))),
            ctypes.c_int(type_ptr_data),
            nrow.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)),
            ctypes.c_int32(ncol),
            ctypes.c_int(_C_API_IS_ROW_MAJOR),
            _c_str(params_str),
            ref_dataset,
            ctypes.byref(self._handle)))
        return self

    def __init_from_csr(
        self,
        csr: scipy.sparse.csr_matrix,
        params_str: str,
        ref_dataset: Optional[_DatasetHandle]
    ) -> "Dataset":
        """Initialize data from a CSR matrix."""
        if len(csr.indices) != len(csr.data):
            raise ValueError(f'Length mismatch: {len(csr.indices)} vs {len(csr.data)}')
        self._handle = ctypes.c_void_p()

        ptr_indptr, type_ptr_indptr, __ = _c_int_array(csr.indptr)
        ptr_data, type_ptr_data, _ = _c_float_array(csr.data)

        assert csr.shape[1] <= _MAX_INT32
        csr_indices = csr.indices.astype(np.int32, copy=False)

        _safe_call(_LIB.LGBM_DatasetCreateFromCSR(
            ptr_indptr,
            ctypes.c_int(type_ptr_indptr),
            csr_indices.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)),
            ptr_data,
            ctypes.c_int(type_ptr_data),
            ctypes.c_int64(len(csr.indptr)),
            ctypes.c_int64(len(csr.data)),
            ctypes.c_int64(csr.shape[1]),
            _c_str(params_str),
            ref_dataset,
            ctypes.byref(self._handle)))
        return self

    def __init_from_csc(
        self,
        csc: scipy.sparse.csc_matrix,
        params_str: str,
        ref_dataset: Optional[_DatasetHandle]
    ) -> "Dataset":
        """Initialize data from a CSC matrix."""
        if len(csc.indices) != len(csc.data):
            raise ValueError(f'Length mismatch: {len(csc.indices)} vs {len(csc.data)}')
        self._handle = ctypes.c_void_p()

        ptr_indptr, type_ptr_indptr, __ = _c_int_array(csc.indptr)
        ptr_data, type_ptr_data, _ = _c_float_array(csc.data)

        assert csc.shape[0] <= _MAX_INT32
        csc_indices = csc.indices.astype(np.int32, copy=False)

        _safe_call(_LIB.LGBM_DatasetCreateFromCSC(
            ptr_indptr,
            ctypes.c_int(type_ptr_indptr),
            csc_indices.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)),
            ptr_data,
            ctypes.c_int(type_ptr_data),
            ctypes.c_int64(len(csc.indptr)),
            ctypes.c_int64(len(csc.data)),
            ctypes.c_int64(csc.shape[0]),
            _c_str(params_str),
            ref_dataset,
            ctypes.byref(self._handle)))
        return self

    def __init_from_pyarrow_table(
        self,
        table: pa_Table,
        params_str: str,
        ref_dataset: Optional[_DatasetHandle]
    ) -> "Dataset":
        """Initialize data from a PyArrow table."""
        if not PYARROW_INSTALLED:
            raise LightGBMError("Cannot init dataframe from Arrow without `pyarrow` installed.")

        # Check that the input is valid: we only handle numbers (for now)
        if not all(arrow_is_integer(t) or arrow_is_floating(t) for t in table.schema.types):
            raise ValueError("Arrow table may only have integer or floating point datatypes")

        # Export Arrow table to C
        c_array = _export_arrow_to_c(table)
        self._handle = ctypes.c_void_p()
        _safe_call(_LIB.LGBM_DatasetCreateFromArrow(
            ctypes.c_int64(c_array.n_chunks),
            ctypes.c_void_p(c_array.chunks_ptr),
            ctypes.c_void_p(c_array.schema_ptr),
            _c_str(params_str),
            ref_dataset,
            ctypes.byref(self._handle)))
        return self

    @staticmethod
    def _compare_params_for_warning(
        params: Dict[str, Any],
        other_params: Dict[str, Any],
        ignore_keys: Set[str]
    ) -> bool:
        """Compare two dictionaries with params ignoring some keys.

        It is only for the warning purpose.

        Parameters
        ----------
        params : dict
            One dictionary with parameters to compare.
        other_params : dict
            Another dictionary with parameters to compare.
        ignore_keys : set
            Keys that should be ignored during comparing two dictionaries.

        Returns
        -------
        compare_result : bool
          Returns whether two dictionaries with params are equal.
        """
        for k in other_params:
            if k not in ignore_keys:
                if k not in params or params[k] != other_params[k]:
                    return False
        for k in params:
            if k not in ignore_keys:
                if k not in other_params or params[k] != other_params[k]:
                    return False
        return True

    def construct(self) -> "Dataset":
        """Lazy init.

        Returns
        -------
        self : Dataset
            Constructed Dataset object.
        """
        if self._handle is None:
            if self.reference is not None:
                reference_params = self.reference.get_params()
                params = self.get_params()
                if params != reference_params:
                    if not self._compare_params_for_warning(
                        params=params,
                        other_params=reference_params,
                        ignore_keys=_ConfigAliases.get("categorical_feature")
                    ):
                        _log_warning('Overriding the parameters from Reference Dataset.')
                    self._update_params(reference_params)
                if self.used_indices is None:
                    # create valid
                    self._lazy_init(data=self.data, label=self.label, reference=self.reference,
                                    weight=self.weight, group=self.group, position=self.position,
                                    init_score=self.init_score, predictor=self._predictor,
                                    feature_name=self.feature_name, categorical_feature='auto', params=self.params)
                else:
                    # construct subset
                    used_indices = _list_to_1d_numpy(self.used_indices, dtype=np.int32, name='used_indices')
                    assert used_indices.flags.c_contiguous
                    if self.reference.group is not None:
                        group_info = np.array(self.reference.group).astype(np.int32, copy=False)
                        _, self.group = np.unique(np.repeat(range(len(group_info)), repeats=group_info)[self.used_indices],
                                                  return_counts=True)
                    self._handle = ctypes.c_void_p()
                    params_str = _param_dict_to_str(self.params)
                    _safe_call(_LIB.LGBM_DatasetGetSubset(
                        self.reference.construct()._handle,
                        used_indices.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)),
                        ctypes.c_int32(used_indices.shape[0]),
                        _c_str(params_str),
                        ctypes.byref(self._handle)))
                    if not self.free_raw_data:
                        self.get_data()
                    if self.group is not None:
                        self.set_group(self.group)
                    if self.position is not None:
                        self.set_position(self.position)
                    if self.get_label() is None:
                        raise ValueError("Label should not be None.")
                    if isinstance(self._predictor, _InnerPredictor) and self._predictor is not self.reference._predictor:
                        self.get_data()
                        self._set_init_score_by_predictor(
                            predictor=self._predictor,
                            data=self.data,
                            used_indices=used_indices
                        )
            else:
                # create train
                self._lazy_init(data=self.data, label=self.label, reference=None,
                                weight=self.weight, group=self.group,
                                init_score=self.init_score, predictor=self._predictor,
                                feature_name=self.feature_name, categorical_feature=self.categorical_feature,
                                params=self.params, position=self.position)
            if self.free_raw_data:
                self.data = None
            self.feature_name = self.get_feature_name()
        return self

    def create_valid(
        self,
        data: _LGBM_TrainDataType,
        label: Optional[_LGBM_LabelType] = None,
        weight: Optional[_LGBM_WeightType] = None,
        group: Optional[_LGBM_GroupType] = None,
        init_score: Optional[_LGBM_InitScoreType] = None,
        params: Optional[Dict[str, Any]] = None,
        position: Optional[_LGBM_PositionType] = None
    ) -> "Dataset":
        """Create validation data align with current Dataset.

        Parameters
        ----------
        data : str, pathlib.Path, numpy array, pandas DataFrame, H2O DataTable's Frame, scipy.sparse, Sequence, list of Sequence or list of numpy array
            Data source of Dataset.
            If str or pathlib.Path, it represents the path to a text file (CSV, TSV, or LibSVM) or a LightGBM Dataset binary file.
        label : list, numpy 1-D array, pandas Series / one-column DataFrame, pyarrow Array, pyarrow ChunkedArray or None, optional (default=None)
            Label of the data.
        weight : list, numpy 1-D array, pandas Series, pyarrow Array, pyarrow ChunkedArray or None, optional (default=None)
            Weight for each instance. Weights should be non-negative.
        group : list, numpy 1-D array, pandas Series, pyarrow Array, pyarrow ChunkedArray or None, optional (default=None)
            Group/query data.
            Only used in the learning-to-rank task.
            sum(group) = n_samples.
            For example, if you have a 100-document dataset with ``group = [10, 20, 40, 10, 10, 10]``, that means that you have 6 groups,
            where the first 10 records are in the first group, records 11-30 are in the second group, records 31-70 are in the third group, etc.
        init_score : list, list of lists (for multi-class task), numpy array, pandas Series, pandas DataFrame (for multi-class task), pyarrow Array, pyarrow ChunkedArray, pyarrow Table (for multi-class task) or None, optional (default=None)
            Init score for Dataset.
        params : dict or None, optional (default=None)
            Other parameters for validation Dataset.
        position : numpy 1-D array, pandas Series or None, optional (default=None)
            Position of items used in unbiased learning-to-rank task.

        Returns
        -------
        valid : Dataset
            Validation Dataset with reference to self.
        """
        ret = Dataset(data, label=label, reference=self,
                      weight=weight, group=group, position=position, init_score=init_score,
                      params=params, free_raw_data=self.free_raw_data)
        ret._predictor = self._predictor
        ret.pandas_categorical = self.pandas_categorical
        return ret

    def subset(
        self,
        used_indices: List[int],
        params: Optional[Dict[str, Any]] = None
    ) -> "Dataset":
        """Get subset of current Dataset.

        Parameters
        ----------
        used_indices : list of int
            Indices used to create the subset.
        params : dict or None, optional (default=None)
            These parameters will be passed to Dataset constructor.

        Returns
        -------
        subset : Dataset
            Subset of the current Dataset.
        """
        if params is None:
            params = self.params
        ret = Dataset(None, reference=self, feature_name=self.feature_name,
                      categorical_feature=self.categorical_feature, params=params,
                      free_raw_data=self.free_raw_data)
        ret._predictor = self._predictor
        ret.pandas_categorical = self.pandas_categorical
        ret.used_indices = sorted(used_indices)
        return ret

    def save_binary(self, filename: Union[str, Path]) -> "Dataset":
        """Save Dataset to a binary file.

        .. note::

            Please note that `init_score` is not saved in binary file.
            If you need it, please set it again after loading Dataset.

        Parameters
        ----------
        filename : str or pathlib.Path
            Name of the output file.

        Returns
        -------
        self : Dataset
            Returns self.
        """
        _safe_call(_LIB.LGBM_DatasetSaveBinary(
            self.construct()._handle,
            _c_str(str(filename))))
        return self

    def _update_params(self, params: Optional[Dict[str, Any]]) -> "Dataset":
        if not params:
            return self
        params = deepcopy(params)

        def update():
            if not self.params:
                self.params = params
            else:
                self._params_back_up = deepcopy(self.params)
                self.params.update(params)

        if self._handle is None:
            update()
        elif params is not None:
            ret = _LIB.LGBM_DatasetUpdateParamChecking(
                _c_str(_param_dict_to_str(self.params)),
                _c_str(_param_dict_to_str(params)))
            if ret != 0:
                # could be updated if data is not freed
                if self.data is not None:
                    update()
                    self._free_handle()
                else:
                    raise LightGBMError(_LIB.LGBM_GetLastError().decode('utf-8'))
        return self

    def _reverse_update_params(self) -> "Dataset":
        if self._handle is None:
            self.params = deepcopy(self._params_back_up)
            self._params_back_up = None
        return self

    def set_field(
        self,
        field_name: str,
        data: Optional[Union[List[List[float]], List[List[int]], List[float], List[int], np.ndarray, pd_Series, pd_DataFrame, pa_Table, pa_Array, pa_ChunkedArray]]
    ) -> "Dataset":
        """Set property into the Dataset.

        Parameters
        ----------
        field_name : str
            The field name of the information.
        data : list, list of lists (for multi-class task), numpy array, pandas Series, pandas DataFrame (for multi-class task), pyarrow Array, pyarrow ChunkedArray or None
            The data to be set.

        Returns
        -------
        self : Dataset
            Dataset with set property.
        """
        if self._handle is None:
            raise Exception(f"Cannot set {field_name} before construct dataset")
        if data is None:
            # set to None
            _safe_call(_LIB.LGBM_DatasetSetField(
                self._handle,
                _c_str(field_name),
                None,
                ctypes.c_int(0),
                ctypes.c_int(_FIELD_TYPE_MAPPER[field_name])))
            return self

        # If the data is a arrow data, we can just pass it to C
        if _is_pyarrow_array(data) or _is_pyarrow_table(data):
            # If a table is being passed, we concatenate the columns. This is only valid for
            # 'init_score'.
            if _is_pyarrow_table(data):
                if field_name != "init_score":
                    raise ValueError(f"pyarrow tables are not supported for field '{field_name}'")
                data = pa_chunked_array([
                    chunk for array in data.columns for chunk in array.chunks  # type: ignore
                ])

            c_array = _export_arrow_to_c(data)
            _safe_call(_LIB.LGBM_DatasetSetFieldFromArrow(
                self._handle,
                _c_str(field_name),
                ctypes.c_int64(c_array.n_chunks),
                ctypes.c_void_p(c_array.chunks_ptr),
                ctypes.c_void_p(c_array.schema_ptr),
            ))
            self.version += 1
            return self

        dtype: "np.typing.DTypeLike"
        if field_name == 'init_score':
            dtype = np.float64
            if _is_1d_collection(data):
                data = _list_to_1d_numpy(data, dtype=dtype, name=field_name)
            elif _is_2d_collection(data):
                data = _data_to_2d_numpy(data, dtype=dtype, name=field_name)
                data = data.ravel(order='F')
            else:
                raise TypeError(
                    'init_score must be list, numpy 1-D array or pandas Series.\n'
                    'In multiclass classification init_score can also be a list of lists, numpy 2-D array or pandas DataFrame.'
                )
        else:
            dtype = np.int32 if (field_name == 'group' or field_name == 'position') else np.float32
            data = _list_to_1d_numpy(data, dtype=dtype, name=field_name)

        ptr_data: Union[_ctypes_float_ptr, _ctypes_int_ptr]
        if data.dtype == np.float32 or data.dtype == np.float64:
            ptr_data, type_data, _ = _c_float_array(data)
        elif data.dtype == np.int32:
            ptr_data, type_data, _ = _c_int_array(data)
        else:
            raise TypeError(f"Expected np.float32/64 or np.int32, met type({data.dtype})")
        if type_data != _FIELD_TYPE_MAPPER[field_name]:
            raise TypeError("Input type error for set_field")
        _safe_call(_LIB.LGBM_DatasetSetField(
            self._handle,
            _c_str(field_name),
            ptr_data,
            ctypes.c_int(len(data)),
            ctypes.c_int(type_data)))
        self.version += 1
        return self

    def get_field(self, field_name: str) -> Optional[np.ndarray]:
        """Get property from the Dataset.

        Can only be run on a constructed Dataset.

        Unlike ``get_group()``, ``get_init_score()``, ``get_label()``, ``get_position()``, and ``get_weight()``,
        this method ignores any raw data passed into ``lgb.Dataset()`` on the Python side, and will only read
        data from the constructed C++ ``Dataset`` object.

        Parameters
        ----------
        field_name : str
            The field name of the information.

        Returns
        -------
        info : numpy array or None
            A numpy array with information from the Dataset.
        """
        if self._handle is None:
            raise Exception(f"Cannot get {field_name} before construct Dataset")
        tmp_out_len = ctypes.c_int(0)
        out_type = ctypes.c_int(0)
        ret = ctypes.POINTER(ctypes.c_void_p)()
        _safe_call(_LIB.LGBM_DatasetGetField(
            self._handle,
            _c_str(field_name),
            ctypes.byref(tmp_out_len),
            ctypes.byref(ret),
            ctypes.byref(out_type)))
        if out_type.value != _FIELD_TYPE_MAPPER[field_name]:
            raise TypeError("Return type error for get_field")
        if tmp_out_len.value == 0:
            return None
        if out_type.value == _C_API_DTYPE_INT32:
            arr = _cint32_array_to_numpy(
                cptr=ctypes.cast(ret, ctypes.POINTER(ctypes.c_int32)),
                length=tmp_out_len.value
            )
        elif out_type.value == _C_API_DTYPE_FLOAT32:
            arr = _cfloat32_array_to_numpy(
                cptr=ctypes.cast(ret, ctypes.POINTER(ctypes.c_float)),
                length=tmp_out_len.value
            )
        elif out_type.value == _C_API_DTYPE_FLOAT64:
            arr = _cfloat64_array_to_numpy(
                cptr=ctypes.cast(ret, ctypes.POINTER(ctypes.c_double)),
                length=tmp_out_len.value
            )
        else:
            raise TypeError("Unknown type")
        if field_name == 'init_score':
            num_data = self.num_data()
            num_classes = arr.size // num_data
            if num_classes > 1:
                arr = arr.reshape((num_data, num_classes), order='F')
        return arr

    def set_categorical_feature(
        self,
        categorical_feature: _LGBM_CategoricalFeatureConfiguration
    ) -> "Dataset":
        """Set categorical features.

        Parameters
        ----------
        categorical_feature : list of str or int, or 'auto'
            Names or indices of categorical features.

        Returns
        -------
        self : Dataset
            Dataset with set categorical features.
        """
        if self.categorical_feature == categorical_feature:
            return self
        if self.data is not None:
            if self.categorical_feature is None:
                self.categorical_feature = categorical_feature
                return self._free_handle()
            elif categorical_feature == 'auto':
                return self
            else:
                if self.categorical_feature != 'auto':
                    _log_warning('categorical_feature in Dataset is overridden.\n'
                                 f'New categorical_feature is {list(categorical_feature)}')
                self.categorical_feature = categorical_feature
                return self._free_handle()
        else:
            raise LightGBMError("Cannot set categorical feature after freed raw data, "
                                "set free_raw_data=False when construct Dataset to avoid this.")

    def _set_predictor(
        self,
        predictor: Optional[_InnerPredictor]
    ) -> "Dataset":
        """Set predictor for continued training.

        It is not recommended for user to call this function.
        Please use init_model argument in engine.train() or engine.cv() instead.
        """
        if predictor is None and self._predictor is None:
            return self
        elif isinstance(predictor, _InnerPredictor) and isinstance(self._predictor, _InnerPredictor):
            if (predictor == self._predictor) and (predictor.current_iteration() == self._predictor.current_iteration()):
                return self
        if self._handle is None:
            self._predictor = predictor
        elif self.data is not None:
            self._predictor = predictor
            self._set_init_score_by_predictor(
                predictor=self._predictor,
                data=self.data,
                used_indices=None
            )
        elif self.used_indices is not None and self.reference is not None and self.reference.data is not None:
            self._predictor = predictor
            self._set_init_score_by_predictor(
                predictor=self._predictor,
                data=self.reference.data,
                used_indices=self.used_indices
            )
        else:
            raise LightGBMError("Cannot set predictor after freed raw data, "
                                "set free_raw_data=False when construct Dataset to avoid this.")
        return self

    def set_reference(self, reference: "Dataset") -> "Dataset":
        """Set reference Dataset.

        Parameters
        ----------
        reference : Dataset
            Reference that is used as a template to construct the current Dataset.

        Returns
        -------
        self : Dataset
            Dataset with set reference.
        """
        self.set_categorical_feature(reference.categorical_feature) \
            .set_feature_name(reference.feature_name) \
            ._set_predictor(reference._predictor)
        # we're done if self and reference share a common upstream reference
        if self.get_ref_chain().intersection(reference.get_ref_chain()):
            return self
        if self.data is not None:
            self.reference = reference
            return self._free_handle()
        else:
            raise LightGBMError("Cannot set reference after freed raw data, "
                                "set free_raw_data=False when construct Dataset to avoid this.")

    def set_feature_name(self, feature_name: _LGBM_FeatureNameConfiguration) -> "Dataset":
        """Set feature name.

        Parameters
        ----------
        feature_name : list of str
            Feature names.

        Returns
        -------
        self : Dataset
            Dataset with set feature name.
        """
        if feature_name != 'auto':
            self.feature_name = feature_name
        if self._handle is not None and feature_name is not None and feature_name != 'auto':
            if len(feature_name) != self.num_feature():
                raise ValueError(f"Length of feature_name({len(feature_name)}) and num_feature({self.num_feature()}) don't match")
            c_feature_name = [_c_str(name) for name in feature_name]
            _safe_call(_LIB.LGBM_DatasetSetFeatureNames(
                self._handle,
                _c_array(ctypes.c_char_p, c_feature_name),
                ctypes.c_int(len(feature_name))))
        return self

    def set_label(self, label: Optional[_LGBM_LabelType]) -> "Dataset":
        """Set label of Dataset.

        Parameters
        ----------
        label : list, numpy 1-D array, pandas Series / one-column DataFrame, pyarrow Array, pyarrow ChunkedArray or None
            The label information to be set into Dataset.

        Returns
        -------
        self : Dataset
            Dataset with set label.
        """
        self.label = label
        if self._handle is not None:
            if isinstance(label, pd_DataFrame):
                if len(label.columns) > 1:
                    raise ValueError('DataFrame for label cannot have multiple columns')
                label_array = np.ravel(_pandas_to_numpy(label, target_dtype=np.float32))
            elif _is_pyarrow_array(label):
                label_array = label
            else:
                label_array = _list_to_1d_numpy(label, dtype=np.float32, name='label')
            self.set_field('label', label_array)
            self.label = self.get_field('label')  # original values can be modified at cpp side
        return self

    def set_weight(
        self,
        weight: Optional[_LGBM_WeightType]
    ) -> "Dataset":
        """Set weight of each instance.

        Parameters
        ----------
        weight : list, numpy 1-D array, pandas Series, pyarrow Array, pyarrow ChunkedArray or None
            Weight to be set for each data point. Weights should be non-negative.

        Returns
        -------
        self : Dataset
            Dataset with set weight.
        """
        # Check if the weight contains values other than one
        if weight is not None:
            if _is_pyarrow_array(weight):
                if pa_compute.all(pa_compute.equal(weight, 1)).as_py():
                    weight = None
            elif np.all(weight == 1):
                weight = None
        self.weight = weight

        # Set field
        if self._handle is not None and weight is not None:
            if not _is_pyarrow_array(weight):
                weight = _list_to_1d_numpy(weight, dtype=np.float32, name='weight')
            self.set_field('weight', weight)
            self.weight = self.get_field('weight')  # original values can be modified at cpp side
        return self

    def set_init_score(
        self,
        init_score: Optional[_LGBM_InitScoreType]
    ) -> "Dataset":
        """Set init score of Booster to start from.

        Parameters
        ----------
        init_score : list, list of lists (for multi-class task), numpy array, pandas Series, pandas DataFrame (for multi-class task), pyarrow Array, pyarrow ChunkedArray, pyarrow Table (for multi-class task) or None
            Init score for Booster.

        Returns
        -------
        self : Dataset
            Dataset with set init score.
        """
        self.init_score = init_score
        if self._handle is not None and init_score is not None:
            self.set_field('init_score', init_score)
            self.init_score = self.get_field('init_score')  # original values can be modified at cpp side
        return self

    def set_group(
        self,
        group: Optional[_LGBM_GroupType]
    ) -> "Dataset":
        """Set group size of Dataset (used for ranking).

        Parameters
        ----------
        group : list, numpy 1-D array, pandas Series, pyarrow Array, pyarrow ChunkedArray or None
            Group/query data.
            Only used in the learning-to-rank task.
            sum(group) = n_samples.
            For example, if you have a 100-document dataset with ``group = [10, 20, 40, 10, 10, 10]``, that means that you have 6 groups,
            where the first 10 records are in the first group, records 11-30 are in the second group, records 31-70 are in the third group, etc.

        Returns
        -------
        self : Dataset
            Dataset with set group.
        """
        self.group = group
        if self._handle is not None and group is not None:
            if not _is_pyarrow_array(group):
                group = _list_to_1d_numpy(group, dtype=np.int32, name='group')
            self.set_field('group', group)
            # original values can be modified at cpp side
            constructed_group = self.get_field('group')
            if constructed_group is not None:
                self.group = np.diff(constructed_group)
        return self

    def set_position(
        self,
        position: Optional[_LGBM_PositionType]
    ) -> "Dataset":
        """Set position of Dataset (used for ranking).

        Parameters
        ----------
        position : numpy 1-D array, pandas Series or None, optional (default=None)
            Position of items used in unbiased learning-to-rank task.

        Returns
        -------
        self : Dataset
            Dataset with set position.
        """
        self.position = position
        if self._handle is not None and position is not None:
            position = _list_to_1d_numpy(position, dtype=np.int32, name='position')
            self.set_field('position', position)
        return self

    def get_feature_name(self) -> List[str]:
        """Get the names of columns (features) in the Dataset.

        Returns
        -------
        feature_names : list of str
            The names of columns (features) in the Dataset.
        """
        if self._handle is None:
            raise LightGBMError("Cannot get feature_name before construct dataset")
        num_feature = self.num_feature()
        tmp_out_len = ctypes.c_int(0)
        reserved_string_buffer_size = 255
        required_string_buffer_size = ctypes.c_size_t(0)
        string_buffers = [ctypes.create_string_buffer(reserved_string_buffer_size) for _ in range(num_feature)]
        ptr_string_buffers = (ctypes.c_char_p * num_feature)(*map(ctypes.addressof, string_buffers))  # type: ignore[misc]
        _safe_call(_LIB.LGBM_DatasetGetFeatureNames(
            self._handle,
            ctypes.c_int(num_feature),
            ctypes.byref(tmp_out_len),
            ctypes.c_size_t(reserved_string_buffer_size),
            ctypes.byref(required_string_buffer_size),
            ptr_string_buffers))
        if num_feature != tmp_out_len.value:
            raise ValueError("Length of feature names doesn't equal with num_feature")
        actual_string_buffer_size = required_string_buffer_size.value
        # if buffer length is not long enough, reallocate buffers
        if reserved_string_buffer_size < actual_string_buffer_size:
            string_buffers = [ctypes.create_string_buffer(actual_string_buffer_size) for _ in range(num_feature)]
            ptr_string_buffers = (ctypes.c_char_p * num_feature)(*map(ctypes.addressof, string_buffers))  # type: ignore[misc]
            _safe_call(_LIB.LGBM_DatasetGetFeatureNames(
                self._handle,
                ctypes.c_int(num_feature),
                ctypes.byref(tmp_out_len),
                ctypes.c_size_t(actual_string_buffer_size),
                ctypes.byref(required_string_buffer_size),
                ptr_string_buffers))
        return [string_buffers[i].value.decode('utf-8') for i in range(num_feature)]

    def get_label(self) -> Optional[_LGBM_LabelType]:
        """Get the label of the Dataset.

        Returns
        -------
        label : list, numpy 1-D array, pandas Series / one-column DataFrame or None
            The label information from the Dataset.
            For a constructed ``Dataset``, this will only return a numpy array.
        """
        if self.label is None:
            self.label = self.get_field('label')
        return self.label

    def get_weight(self) -> Optional[_LGBM_WeightType]:
        """Get the weight of the Dataset.

        Returns
        -------
        weight : list, numpy 1-D array, pandas Series or None
            Weight for each data point from the Dataset. Weights should be non-negative.
            For a constructed ``Dataset``, this will only return ``None`` or a numpy array.
        """
        if self.weight is None:
            self.weight = self.get_field('weight')
        return self.weight

    def get_init_score(self) -> Optional[_LGBM_InitScoreType]:
        """Get the initial score of the Dataset.

        Returns
        -------
        init_score : list, list of lists (for multi-class task), numpy array, pandas Series, pandas DataFrame (for multi-class task), or None
            Init score of Booster.
            For a constructed ``Dataset``, this will only return ``None`` or a numpy array.
        """
        if self.init_score is None:
            self.init_score = self.get_field('init_score')
        return self.init_score

    def get_data(self) -> Optional[_LGBM_TrainDataType]:
        """Get the raw data of the Dataset.

        Returns
        -------
        data : str, pathlib.Path, numpy array, pandas DataFrame, H2O DataTable's Frame, scipy.sparse, Sequence, list of Sequence or list of numpy array or None
            Raw data used in the Dataset construction.
        """
        if self._handle is None:
            raise Exception("Cannot get data before construct Dataset")
        if self._need_slice and self.used_indices is not None and self.reference is not None:
            self.data = self.reference.data
            if self.data is not None:
                if isinstance(self.data, np.ndarray) or isinstance(self.data, scipy.sparse.spmatrix):
                    self.data = self.data[self.used_indices, :]
                elif isinstance(self.data, pd_DataFrame):
                    self.data = self.data.iloc[self.used_indices].copy()
                elif isinstance(self.data, dt_DataTable):
                    self.data = self.data[self.used_indices, :]
                elif isinstance(self.data, Sequence):
                    self.data = self.data[self.used_indices]
                elif _is_list_of_sequences(self.data) and len(self.data) > 0:
                    self.data = np.array(list(self._yield_row_from_seqlist(self.data, self.used_indices)))
                else:
                    _log_warning(f"Cannot subset {type(self.data).__name__} type of raw data.\n"
                                 "Returning original raw data")
            self._need_slice = False
        if self.data is None:
            raise LightGBMError("Cannot call `get_data` after freed raw data, "
                                "set free_raw_data=False when construct Dataset to avoid this.")
        return self.data

    def get_group(self) -> Optional[_LGBM_GroupType]:
        """Get the group of the Dataset.

        Returns
        -------
        group : list, numpy 1-D array, pandas Series or None
            Group/query data.
            Only used in the learning-to-rank task.
            sum(group) = n_samples.
            For example, if you have a 100-document dataset with ``group = [10, 20, 40, 10, 10, 10]``, that means that you have 6 groups,
            where the first 10 records are in the first group, records 11-30 are in the second group, records 31-70 are in the third group, etc.
            For a constructed ``Dataset``, this will only return ``None`` or a numpy array.
        """
        if self.group is None:
            self.group = self.get_field('group')
            if self.group is not None:
                # group data from LightGBM is boundaries data, need to convert to group size
                self.group = np.diff(self.group)
        return self.group

    def get_position(self) -> Optional[_LGBM_PositionType]:
        """Get the position of the Dataset.

        Returns
        -------
        position : numpy 1-D array, pandas Series or None
            Position of items used in unbiased learning-to-rank task.
            For a constructed ``Dataset``, this will only return ``None`` or a numpy array.
        """
        if self.position is None:
            self.position = self.get_field('position')
        return self.position

    def num_data(self) -> int:
        """Get the number of rows in the Dataset.

        Returns
        -------
        number_of_rows : int
            The number of rows in the Dataset.
        """
        if self._handle is not None:
            ret = ctypes.c_int(0)
            _safe_call(_LIB.LGBM_DatasetGetNumData(self._handle,
                                                   ctypes.byref(ret)))
            return ret.value
        else:
            raise LightGBMError("Cannot get num_data before construct dataset")

    def num_feature(self) -> int:
        """Get the number of columns (features) in the Dataset.

        Returns
        -------
        number_of_columns : int
            The number of columns (features) in the Dataset.
        """
        if self._handle is not None:
            ret = ctypes.c_int(0)
            _safe_call(_LIB.LGBM_DatasetGetNumFeature(self._handle,
                                                      ctypes.byref(ret)))
            return ret.value
        else:
            raise LightGBMError("Cannot get num_feature before construct dataset")

    def feature_num_bin(self, feature: Union[int, str]) -> int:
        """Get the number of bins for a feature.

        .. versionadded:: 4.0.0

        Parameters
        ----------
        feature : int or str
            Index or name of the feature.

        Returns
        -------
        number_of_bins : int
            The number of constructed bins for the feature in the Dataset.
        """
        if self._handle is not None:
            if isinstance(feature, str):
                feature_index = self.feature_name.index(feature)
            else:
                feature_index = feature
            ret = ctypes.c_int(0)
            _safe_call(_LIB.LGBM_DatasetGetFeatureNumBin(self._handle,
                                                         ctypes.c_int(feature_index),
                                                         ctypes.byref(ret)))
            return ret.value
        else:
            raise LightGBMError("Cannot get feature_num_bin before construct dataset")

    def get_ref_chain(self, ref_limit: int = 100) -> Set["Dataset"]:
        """Get a chain of Dataset objects.

        Starts with r, then goes to r.reference (if exists),
        then to r.reference.reference, etc.
        until we hit ``ref_limit`` or a reference loop.

        Parameters
        ----------
        ref_limit : int, optional (default=100)
            The limit number of references.

        Returns
        -------
        ref_chain : set of Dataset
            Chain of references of the Datasets.
        """
        head = self
        ref_chain: Set[Dataset] = set()
        while len(ref_chain) < ref_limit:
            if isinstance(head, Dataset):
                ref_chain.add(head)
                if (head.reference is not None) and (head.reference not in ref_chain):
                    head = head.reference
                else:
                    break
            else:
                break
        return ref_chain

    def add_features_from(self, other: "Dataset") -> "Dataset":
        """Add features from other Dataset to the current Dataset.

        Both Datasets must be constructed before calling this method.

        Parameters
        ----------
        other : Dataset
            The Dataset to take features from.

        Returns
        -------
        self : Dataset
            Dataset with the new features added.
        """
        if self._handle is None or other._handle is None:
            raise ValueError('Both source and target Datasets must be constructed before adding features')
        _safe_call(_LIB.LGBM_DatasetAddFeaturesFrom(self._handle, other._handle))
        was_none = self.data is None
        old_self_data_type = type(self.data).__name__
        if other.data is None:
            self.data = None
        elif self.data is not None:
            if isinstance(self.data, np.ndarray):
                if isinstance(other.data, np.ndarray):
                    self.data = np.hstack((self.data, other.data))
                elif isinstance(other.data, scipy.sparse.spmatrix):
                    self.data = np.hstack((self.data, other.data.toarray()))
                elif isinstance(other.data, pd_DataFrame):
                    self.data = np.hstack((self.data, other.data.values))
                elif isinstance(other.data, dt_DataTable):
                    self.data = np.hstack((self.data, other.data.to_numpy()))
                else:
                    self.data = None
            elif isinstance(self.data, scipy.sparse.spmatrix):
                sparse_format = self.data.getformat()
                if isinstance(other.data, np.ndarray) or isinstance(other.data, scipy.sparse.spmatrix):
                    self.data = scipy.sparse.hstack((self.data, other.data), format=sparse_format)
                elif isinstance(other.data, pd_DataFrame):
                    self.data = scipy.sparse.hstack((self.data, other.data.values), format=sparse_format)
                elif isinstance(other.data, dt_DataTable):
                    self.data = scipy.sparse.hstack((self.data, other.data.to_numpy()), format=sparse_format)
                else:
                    self.data = None
            elif isinstance(self.data, pd_DataFrame):
                if not PANDAS_INSTALLED:
                    raise LightGBMError("Cannot add features to DataFrame type of raw data "
                                        "without pandas installed. "
                                        "Install pandas and restart your session.")
                if isinstance(other.data, np.ndarray):
                    self.data = concat((self.data, pd_DataFrame(other.data)),
                                       axis=1, ignore_index=True)
                elif isinstance(other.data, scipy.sparse.spmatrix):
                    self.data = concat((self.data, pd_DataFrame(other.data.toarray())),
                                       axis=1, ignore_index=True)
                elif isinstance(other.data, pd_DataFrame):
                    self.data = concat((self.data, other.data),
                                       axis=1, ignore_index=True)
                elif isinstance(other.data, dt_DataTable):
                    self.data = concat((self.data, pd_DataFrame(other.data.to_numpy())),
                                       axis=1, ignore_index=True)
                else:
                    self.data = None
            elif isinstance(self.data, dt_DataTable):
                if isinstance(other.data, np.ndarray):
                    self.data = dt_DataTable(np.hstack((self.data.to_numpy(), other.data)))
                elif isinstance(other.data, scipy.sparse.spmatrix):
                    self.data = dt_DataTable(np.hstack((self.data.to_numpy(), other.data.toarray())))
                elif isinstance(other.data, pd_DataFrame):
                    self.data = dt_DataTable(np.hstack((self.data.to_numpy(), other.data.values)))
                elif isinstance(other.data, dt_DataTable):
                    self.data = dt_DataTable(np.hstack((self.data.to_numpy(), other.data.to_numpy())))
                else:
                    self.data = None
            else:
                self.data = None
        if self.data is None:
            err_msg = (f"Cannot add features from {type(other.data).__name__} type of raw data to "
                       f"{old_self_data_type} type of raw data.\n")
            err_msg += ("Set free_raw_data=False when construct Dataset to avoid this"
                        if was_none else "Freeing raw data")
            _log_warning(err_msg)
        self.feature_name = self.get_feature_name()
        _log_warning("Reseting categorical features.\n"
                     "You can set new categorical features via ``set_categorical_feature`` method")
        self.categorical_feature = "auto"
        self.pandas_categorical = None
        return self

    def _dump_text(self, filename: Union[str, Path]) -> "Dataset":
        """Save Dataset to a text file.

        This format cannot be loaded back in by LightGBM, but is useful for debugging purposes.

        Parameters
        ----------
        filename : str or pathlib.Path
            Name of the output file.

        Returns
        -------
        self : Dataset
            Returns self.
        """
        _safe_call(_LIB.LGBM_DatasetDumpText(
            self.construct()._handle,
            _c_str(str(filename))))
        return self


_LGBM_CustomObjectiveFunction = Callable[
    [np.ndarray, Dataset],
    Tuple[np.ndarray, np.ndarray]
]
_LGBM_CustomEvalFunction = Union[
    Callable[
        [np.ndarray, Dataset],
        _LGBM_EvalFunctionResultType
    ],
    Callable[
        [np.ndarray, Dataset],
        List[_LGBM_EvalFunctionResultType]
    ]
]


class Booster:
    """Booster in LightGBM."""

    def __init__(
        self,
        params: Optional[Dict[str, Any]] = None,
        train_set: Optional[Dataset] = None,
        model_file: Optional[Union[str, Path]] = None,
        model_str: Optional[str] = None
    ):
        """Initialize the Booster.

        Parameters
        ----------
        params : dict or None, optional (default=None)
            Parameters for Booster.
        train_set : Dataset or None, optional (default=None)
            Training dataset.
        model_file : str, pathlib.Path or None, optional (default=None)
            Path to the model file.
        model_str : str or None, optional (default=None)
            Model will be loaded from this string.
        """
        self._handle = ctypes.c_void_p()
        self._network = False
        self.__need_reload_eval_info = True
        self._train_data_name = "training"
        self.__set_objective_to_none = False
        self.best_iteration = -1
        self.best_score: _LGBM_BoosterBestScoreType = {}
        params = {} if params is None else deepcopy(params)
        if train_set is not None:
            # Training task
            if not isinstance(train_set, Dataset):
                raise TypeError(f'Training data should be Dataset instance, met {type(train_set).__name__}')
            params = _choose_param_value(
                main_param_name="machines",
                params=params,
                default_value=None
            )
            # if "machines" is given, assume user wants to do distributed learning, and set up network
            if params["machines"] is None:
                params.pop("machines", None)
            else:
                machines = params["machines"]
                if isinstance(machines, str):
                    num_machines_from_machine_list = len(machines.split(','))
                elif isinstance(machines, (list, set)):
                    num_machines_from_machine_list = len(machines)
                    machines = ','.join(machines)
                else:
                    raise ValueError("Invalid machines in params.")

                params = _choose_param_value(
                    main_param_name="num_machines",
                    params=params,
                    default_value=num_machines_from_machine_list
                )
                params = _choose_param_value(
                    main_param_name="local_listen_port",
                    params=params,
                    default_value=12400
                )
                self.set_network(
                    machines=machines,
                    local_listen_port=params["local_listen_port"],
                    listen_time_out=params.get("time_out", 120),
                    num_machines=params["num_machines"]
                )
            # construct booster object
            train_set.construct()
            # copy the parameters from train_set
            params.update(train_set.get_params())
            params_str = _param_dict_to_str(params)
            _safe_call(_LIB.LGBM_BoosterCreate(
                train_set._handle,
                _c_str(params_str),
                ctypes.byref(self._handle)))
            # save reference to data
            self.train_set = train_set
            self.valid_sets: List[Dataset] = []
            self.name_valid_sets: List[str] = []
            self.__num_dataset = 1
            self.__init_predictor = train_set._predictor
            if self.__init_predictor is not None:
                _safe_call(_LIB.LGBM_BoosterMerge(
                    self._handle,
                    self.__init_predictor._handle))
            out_num_class = ctypes.c_int(0)
            _safe_call(_LIB.LGBM_BoosterGetNumClasses(
                self._handle,
                ctypes.byref(out_num_class)))
            self.__num_class = out_num_class.value
            # buffer for inner predict
            self.__inner_predict_buffer: List[Optional[np.ndarray]] = [None]
            self.__is_predicted_cur_iter = [False]
            self.__get_eval_info()
            self.pandas_categorical = train_set.pandas_categorical
            self.train_set_version = train_set.version
        elif model_file is not None:
            # Prediction task
            out_num_iterations = ctypes.c_int(0)
            _safe_call(_LIB.LGBM_BoosterCreateFromModelfile(
                _c_str(str(model_file)),
                ctypes.byref(out_num_iterations),
                ctypes.byref(self._handle)))
            out_num_class = ctypes.c_int(0)
            _safe_call(_LIB.LGBM_BoosterGetNumClasses(
                self._handle,
                ctypes.byref(out_num_class)))
            self.__num_class = out_num_class.value
            self.pandas_categorical = _load_pandas_categorical(file_name=model_file)
            if params:
                _log_warning('Ignoring params argument, using parameters from model file.')
            params = self._get_loaded_param()
        elif model_str is not None:
            self.model_from_string(model_str)
        else:
            raise TypeError('Need at least one training dataset or model file or model string '
                            'to create Booster instance')
        self.params = params

    def __del__(self) -> None:
        try:
            if self._network:
                self.free_network()
        except AttributeError:
            pass
        try:
            if self._handle is not None:
                _safe_call(_LIB.LGBM_BoosterFree(self._handle))
        except AttributeError:
            pass

    def __copy__(self) -> "Booster":
        return self.__deepcopy__(None)

    def __deepcopy__(self, _) -> "Booster":
        model_str = self.model_to_string(num_iteration=-1)
        return Booster(model_str=model_str)

    def __getstate__(self) -> Dict[str, Any]:
        this = self.__dict__.copy()
        handle = this['_handle']
        this.pop('train_set', None)
        this.pop('valid_sets', None)
        if handle is not None:
            this["_handle"] = self.model_to_string(num_iteration=-1)
        return this

    def __setstate__(self, state: Dict[str, Any]) -> None:
        model_str = state.get('_handle', state.get('handle', None))
        if model_str is not None:
            handle = ctypes.c_void_p()
            out_num_iterations = ctypes.c_int(0)
            _safe_call(_LIB.LGBM_BoosterLoadModelFromString(
                _c_str(model_str),
                ctypes.byref(out_num_iterations),
                ctypes.byref(handle)))
            state['_handle'] = handle
        self.__dict__.update(state)

    def _get_loaded_param(self) -> Dict[str, Any]:
        buffer_len = 1 << 20
        tmp_out_len = ctypes.c_int64(0)
        string_buffer = ctypes.create_string_buffer(buffer_len)
        ptr_string_buffer = ctypes.c_char_p(ctypes.addressof(string_buffer))
        _safe_call(_LIB.LGBM_BoosterGetLoadedParam(
            self._handle,
            ctypes.c_int64(buffer_len),
            ctypes.byref(tmp_out_len),
            ptr_string_buffer))
        actual_len = tmp_out_len.value
        # if buffer length is not long enough, re-allocate a buffer
        if actual_len > buffer_len:
            string_buffer = ctypes.create_string_buffer(actual_len)
            ptr_string_buffer = ctypes.c_char_p(ctypes.addressof(string_buffer))
            _safe_call(_LIB.LGBM_BoosterGetLoadedParam(
                self._handle,
                ctypes.c_int64(actual_len),
                ctypes.byref(tmp_out_len),
                ptr_string_buffer))
        return json.loads(string_buffer.value.decode('utf-8'))

    def free_dataset(self) -> "Booster":
        """Free Booster's Datasets.

        Returns
        -------
        self : Booster
            Booster without Datasets.
        """
        self.__dict__.pop('train_set', None)
        self.__dict__.pop('valid_sets', None)
        self.__num_dataset = 0
        return self

    def _free_buffer(self) -> "Booster":
        self.__inner_predict_buffer = []
        self.__is_predicted_cur_iter = []
        return self

    def set_network(
        self,
        machines: Union[List[str], Set[str], str],
        local_listen_port: int = 12400,
        listen_time_out: int = 120,
        num_machines: int = 1
    ) -> "Booster":
        """Set the network configuration.

        Parameters
        ----------
        machines : list, set or str
            Names of machines.
        local_listen_port : int, optional (default=12400)
            TCP listen port for local machines.
        listen_time_out : int, optional (default=120)
            Socket time-out in minutes.
        num_machines : int, optional (default=1)
            The number of machines for distributed learning application.

        Returns
        -------
        self : Booster
            Booster with set network.
        """
        if isinstance(machines, (list, set)):
            machines = ','.join(machines)
        _safe_call(_LIB.LGBM_NetworkInit(_c_str(machines),
                                         ctypes.c_int(local_listen_port),
                                         ctypes.c_int(listen_time_out),
                                         ctypes.c_int(num_machines)))
        self._network = True
        return self

    def free_network(self) -> "Booster":
        """Free Booster's network.

        Returns
        -------
        self : Booster
            Booster with freed network.
        """
        _safe_call(_LIB.LGBM_NetworkFree())
        self._network = False
        return self

    def trees_to_dataframe(self) -> pd_DataFrame:
        """Parse the fitted model and return in an easy-to-read pandas DataFrame.

        The returned DataFrame has the following columns.

            - ``tree_index`` : int64, which tree a node belongs to. 0-based, so a value of ``6``, for example, means "this node is in the 7th tree".
            - ``node_depth`` : int64, how far a node is from the root of the tree. The root node has a value of ``1``, its direct children are ``2``, etc.
            - ``node_index`` : str, unique identifier for a node.
            - ``left_child`` : str, ``node_index`` of the child node to the left of a split. ``None`` for leaf nodes.
            - ``right_child`` : str, ``node_index`` of the child node to the right of a split. ``None`` for leaf nodes.
            - ``parent_index`` : str, ``node_index`` of this node's parent. ``None`` for the root node.
            - ``split_feature`` : str, name of the feature used for splitting. ``None`` for leaf nodes.
            - ``split_gain`` : float64, gain from adding this split to the tree. ``NaN`` for leaf nodes.
            - ``threshold`` : float64, value of the feature used to decide which side of the split a record will go down. ``NaN`` for leaf nodes.
            - ``decision_type`` : str, logical operator describing how to compare a value to ``threshold``.
              For example, ``split_feature = "Column_10", threshold = 15, decision_type = "<="`` means that
              records where ``Column_10 <= 15`` follow the left side of the split, otherwise follows the right side of the split. ``None`` for leaf nodes.
            - ``missing_direction`` : str, split direction that missing values should go to. ``None`` for leaf nodes.
            - ``missing_type`` : str, describes what types of values are treated as missing.
            - ``value`` : float64, predicted value for this leaf node, multiplied by the learning rate.
            - ``weight`` : float64 or int64, sum of Hessian (second-order derivative of objective), summed over observations that fall in this node.
            - ``count`` : int64, number of records in the training data that fall into this node.

        Returns
        -------
        result : pandas DataFrame
            Returns a pandas DataFrame of the parsed model.
        """
        if not PANDAS_INSTALLED:
            raise LightGBMError('This method cannot be run without pandas installed. '
                                'You must install pandas and restart your session to use this method.')

        if self.num_trees() == 0:
            raise LightGBMError('There are no trees in this Booster and thus nothing to parse')

        def _is_split_node(tree: Dict[str, Any]) -> bool:
            return 'split_index' in tree.keys()

        def create_node_record(
            tree: Dict[str, Any],
            node_depth: int = 1,
            tree_index: Optional[int] = None,
            feature_names: Optional[List[str]] = None,
            parent_node: Optional[str] = None
        ) -> Dict[str, Any]:

            def _get_node_index(
                tree: Dict[str, Any],
                tree_index: Optional[int]
            ) -> str:
                tree_num = f'{tree_index}-' if tree_index is not None else ''
                is_split = _is_split_node(tree)
                node_type = 'S' if is_split else 'L'
                # if a single node tree it won't have `leaf_index` so return 0
                node_num = tree.get('split_index' if is_split else 'leaf_index', 0)
                return f"{tree_num}{node_type}{node_num}"

            def _get_split_feature(
                tree: Dict[str, Any],
                feature_names: Optional[List[str]]
            ) -> Optional[str]:
                if _is_split_node(tree):
                    if feature_names is not None:
                        feature_name = feature_names[tree['split_feature']]
                    else:
                        feature_name = tree['split_feature']
                else:
                    feature_name = None
                return feature_name

            def _is_single_node_tree(tree: Dict[str, Any]) -> bool:
                return set(tree.keys()) == {'leaf_value'}

            # Create the node record, and populate universal data members
            node: Dict[str, Union[int, str, None]] = OrderedDict()
            node['tree_index'] = tree_index
            node['node_depth'] = node_depth
            node['node_index'] = _get_node_index(tree, tree_index)
            node['left_child'] = None
            node['right_child'] = None
            node['parent_index'] = parent_node
            node['split_feature'] = _get_split_feature(tree, feature_names)
            node['split_gain'] = None
            node['threshold'] = None
            node['decision_type'] = None
            node['missing_direction'] = None
            node['missing_type'] = None
            node['value'] = None
            node['weight'] = None
            node['count'] = None

            # Update values to reflect node type (leaf or split)
            if _is_split_node(tree):
                node['left_child'] = _get_node_index(tree['left_child'], tree_index)
                node['right_child'] = _get_node_index(tree['right_child'], tree_index)
                node['split_gain'] = tree['split_gain']
                node['threshold'] = tree['threshold']
                node['decision_type'] = tree['decision_type']
                node['missing_direction'] = 'left' if tree['default_left'] else 'right'
                node['missing_type'] = tree['missing_type']
                node['value'] = tree['internal_value']
                node['weight'] = tree['internal_weight']
                node['count'] = tree['internal_count']
            else:
                node['value'] = tree['leaf_value']
                if not _is_single_node_tree(tree):
                    node['weight'] = tree['leaf_weight']
                    node['count'] = tree['leaf_count']

            return node

        def tree_dict_to_node_list(
            tree: Dict[str, Any],
            node_depth: int = 1,
            tree_index: Optional[int] = None,
            feature_names: Optional[List[str]] = None,
            parent_node: Optional[str] = None
        ) -> List[Dict[str, Any]]:

            node = create_node_record(tree=tree,
                                      node_depth=node_depth,
                                      tree_index=tree_index,
                                      feature_names=feature_names,
                                      parent_node=parent_node)

            res = [node]

            if _is_split_node(tree):
                # traverse the next level of the tree
                children = ['left_child', 'right_child']
                for child in children:
                    subtree_list = tree_dict_to_node_list(
                        tree=tree[child],
                        node_depth=node_depth + 1,
                        tree_index=tree_index,
                        feature_names=feature_names,
                        parent_node=node['node_index']
                    )
                    # In tree format, "subtree_list" is a list of node records (dicts),
                    # and we add node to the list.
                    res.extend(subtree_list)
            return res

        model_dict = self.dump_model()
        feature_names = model_dict['feature_names']
        model_list = []
        for tree in model_dict['tree_info']:
            model_list.extend(tree_dict_to_node_list(tree=tree['tree_structure'],
                                                     tree_index=tree['tree_index'],
                                                     feature_names=feature_names))

        return pd_DataFrame(model_list, columns=model_list[0].keys())

    def set_train_data_name(self, name: str) -> "Booster":
        """Set the name to the training Dataset.

        Parameters
        ----------
        name : str
            Name for the training Dataset.

        Returns
        -------
        self : Booster
            Booster with set training Dataset name.
        """
        self._train_data_name = name
        return self

    def add_valid(self, data: Dataset, name: str) -> "Booster":
        """Add validation data.

        Parameters
        ----------
        data : Dataset
            Validation data.
        name : str
            Name of validation data.

        Returns
        -------
        self : Booster
            Booster with set validation data.
        """
        if not isinstance(data, Dataset):
            raise TypeError(f'Validation data should be Dataset instance, met {type(data).__name__}')
        if data._predictor is not self.__init_predictor:
            raise LightGBMError("Add validation data failed, "
                                "you should use same predictor for these data")
        _safe_call(_LIB.LGBM_BoosterAddValidData(
            self._handle,
            data.construct()._handle))
        self.valid_sets.append(data)
        self.name_valid_sets.append(name)
        self.__num_dataset += 1
        self.__inner_predict_buffer.append(None)
        self.__is_predicted_cur_iter.append(False)
        return self

    def reset_parameter(self, params: Dict[str, Any]) -> "Booster":
        """Reset parameters of Booster.

        Parameters
        ----------
        params : dict
            New parameters for Booster.

        Returns
        -------
        self : Booster
            Booster with new parameters.
        """
        params_str = _param_dict_to_str(params)
        if params_str:
            _safe_call(_LIB.LGBM_BoosterResetParameter(
                self._handle,
                _c_str(params_str)))
        self.params.update(params)
        return self

    def update(
        self,
        train_set: Optional[Dataset] = None,
        fobj: Optional[_LGBM_CustomObjectiveFunction] = None
    ) -> bool:
        """Update Booster for one iteration.

        Parameters
        ----------
        train_set : Dataset or None, optional (default=None)
            Training data.
            If None, last training data is used.
        fobj : callable or None, optional (default=None)
            Customized objective function.
            Should accept two parameters: preds, train_data,
            and return (grad, hess).

                preds : numpy 1-D array or numpy 2-D array (for multi-class task)
                    The predicted values.
                    Predicted values are returned before any transformation,
                    e.g. they are raw margin instead of probability of positive class for binary task.
                train_data : Dataset
                    The training dataset.
                grad : numpy 1-D array or numpy 2-D array (for multi-class task)
                    The value of the first order derivative (gradient) of the loss
                    with respect to the elements of preds for each sample point.
                hess : numpy 1-D array or numpy 2-D array (for multi-class task)
                    The value of the second order derivative (Hessian) of the loss
                    with respect to the elements of preds for each sample point.

            For multi-class task, preds are numpy 2-D array of shape = [n_samples, n_classes],
            and grad and hess should be returned in the same format.

        Returns
        -------
        is_finished : bool
            Whether the update was successfully finished.
        """
        # need reset training data
        if train_set is None and self.train_set_version != self.train_set.version:
            train_set = self.train_set
            is_the_same_train_set = False
        else:
            is_the_same_train_set = train_set is self.train_set and self.train_set_version == train_set.version
        if train_set is not None and not is_the_same_train_set:
            if not isinstance(train_set, Dataset):
                raise TypeError(f'Training data should be Dataset instance, met {type(train_set).__name__}')
            if train_set._predictor is not self.__init_predictor:
                raise LightGBMError("Replace training data failed, "
                                    "you should use same predictor for these data")
            self.train_set = train_set
            _safe_call(_LIB.LGBM_BoosterResetTrainingData(
                self._handle,
                self.train_set.construct()._handle))
            self.__inner_predict_buffer[0] = None
            self.train_set_version = self.train_set.version
        is_finished = ctypes.c_int(0)
        if fobj is None:
            if self.__set_objective_to_none:
                raise LightGBMError('Cannot update due to null objective function.')
            _safe_call(_LIB.LGBM_BoosterUpdateOneIter(
                self._handle,
                ctypes.byref(is_finished)))
            self.__is_predicted_cur_iter = [False for _ in range(self.__num_dataset)]
            return is_finished.value == 1
        else:
            if not self.__set_objective_to_none:
                self.reset_parameter({"objective": "none"}).__set_objective_to_none = True
            grad, hess = fobj(self.__inner_predict(0), self.train_set)
            return self.__boost(grad, hess)

    def __boost(
        self,
        grad: np.ndarray,
        hess: np.ndarray
    ) -> bool:
        """Boost Booster for one iteration with customized gradient statistics.

        .. note::

            Score is returned before any transformation,
            e.g. it is raw margin instead of probability of positive class for binary task.
            For multi-class task, score are numpy 2-D array of shape = [n_samples, n_classes],
            and grad and hess should be returned in the same format.

        Parameters
        ----------
        grad : numpy 1-D array or numpy 2-D array (for multi-class task)
            The value of the first order derivative (gradient) of the loss
            with respect to the elements of score for each sample point.
        hess : numpy 1-D array or numpy 2-D array (for multi-class task)
            The value of the second order derivative (Hessian) of the loss
            with respect to the elements of score for each sample point.

        Returns
        -------
        is_finished : bool
            Whether the boost was successfully finished.
        """
        if self.__num_class > 1:
            grad = grad.ravel(order='F')
            hess = hess.ravel(order='F')
        grad = _list_to_1d_numpy(grad, dtype=np.float32, name='gradient')
        hess = _list_to_1d_numpy(hess, dtype=np.float32, name='hessian')
        assert grad.flags.c_contiguous
        assert hess.flags.c_contiguous
        if len(grad) != len(hess):
            raise ValueError(f"Lengths of gradient ({len(grad)}) and Hessian ({len(hess)}) don't match")
        num_train_data = self.train_set.num_data()
        if len(grad) != num_train_data * self.__num_class:
            raise ValueError(
                f"Lengths of gradient ({len(grad)}) and Hessian ({len(hess)}) "
                f"don't match training data length ({num_train_data}) * "
                f"number of models per one iteration ({self.__num_class})"
            )
        is_finished = ctypes.c_int(0)
        _safe_call(_LIB.LGBM_BoosterUpdateOneIterCustom(
            self._handle,
            grad.ctypes.data_as(ctypes.POINTER(ctypes.c_float)),
            hess.ctypes.data_as(ctypes.POINTER(ctypes.c_float)),
            ctypes.byref(is_finished)))
        self.__is_predicted_cur_iter = [False for _ in range(self.__num_dataset)]
        return is_finished.value == 1

    def rollback_one_iter(self) -> "Booster":
        """Rollback one iteration.

        Returns
        -------
        self : Booster
            Booster with rolled back one iteration.
        """
        _safe_call(_LIB.LGBM_BoosterRollbackOneIter(
            self._handle))
        self.__is_predicted_cur_iter = [False for _ in range(self.__num_dataset)]
        return self

    def current_iteration(self) -> int:
        """Get the index of the current iteration.

        Returns
        -------
        cur_iter : int
            The index of the current iteration.
        """
        out_cur_iter = ctypes.c_int(0)
        _safe_call(_LIB.LGBM_BoosterGetCurrentIteration(
            self._handle,
            ctypes.byref(out_cur_iter)))
        return out_cur_iter.value

    def num_model_per_iteration(self) -> int:
        """Get number of models per iteration.

        Returns
        -------
        model_per_iter : int
            The number of models per iteration.
        """
        model_per_iter = ctypes.c_int(0)
        _safe_call(_LIB.LGBM_BoosterNumModelPerIteration(
            self._handle,
            ctypes.byref(model_per_iter)))
        return model_per_iter.value

    def num_trees(self) -> int:
        """Get number of weak sub-models.

        Returns
        -------
        num_trees : int
            The number of weak sub-models.
        """
        num_trees = ctypes.c_int(0)
        _safe_call(_LIB.LGBM_BoosterNumberOfTotalModel(
            self._handle,
            ctypes.byref(num_trees)))
        return num_trees.value

    def upper_bound(self) -> float:
        """Get upper bound value of a model.

        Returns
        -------
        upper_bound : float
            Upper bound value of the model.
        """
        ret = ctypes.c_double(0)
        _safe_call(_LIB.LGBM_BoosterGetUpperBoundValue(
            self._handle,
            ctypes.byref(ret)))
        return ret.value

    def lower_bound(self) -> float:
        """Get lower bound value of a model.

        Returns
        -------
        lower_bound : float
            Lower bound value of the model.
        """
        ret = ctypes.c_double(0)
        _safe_call(_LIB.LGBM_BoosterGetLowerBoundValue(
            self._handle,
            ctypes.byref(ret)))
        return ret.value

    def eval(
        self,
        data: Dataset,
        name: str,
        feval: Optional[Union[_LGBM_CustomEvalFunction, List[_LGBM_CustomEvalFunction]]] = None
    ) -> List[_LGBM_BoosterEvalMethodResultType]:
        """Evaluate for data.

        Parameters
        ----------
        data : Dataset
            Data for the evaluating.
        name : str
            Name of the data.
        feval : callable, list of callable, or None, optional (default=None)
            Customized evaluation function.
            Each evaluation function should accept two parameters: preds, eval_data,
            and return (eval_name, eval_result, is_higher_better) or list of such tuples.

                preds : numpy 1-D array or numpy 2-D array (for multi-class task)
                    The predicted values.
                    For multi-class task, preds are numpy 2-D array of shape = [n_samples, n_classes].
                    If custom objective function is used, predicted values are returned before any transformation,
                    e.g. they are raw margin instead of probability of positive class for binary task in this case.
                eval_data : Dataset
                    A ``Dataset`` to evaluate.
                eval_name : str
                    The name of evaluation function (without whitespace).
                eval_result : float
                    The eval result.
                is_higher_better : bool
                    Is eval result higher better, e.g. AUC is ``is_higher_better``.

        Returns
        -------
        result : list
            List with (dataset_name, eval_name, eval_result, is_higher_better) tuples.
        """
        if not isinstance(data, Dataset):
            raise TypeError("Can only eval for Dataset instance")
        data_idx = -1
        if data is self.train_set:
            data_idx = 0
        else:
            for i in range(len(self.valid_sets)):
                if data is self.valid_sets[i]:
                    data_idx = i + 1
                    break
        # need to push new valid data
        if data_idx == -1:
            self.add_valid(data, name)
            data_idx = self.__num_dataset - 1

        return self.__inner_eval(name, data_idx, feval)

    def eval_train(
        self,
        feval: Optional[Union[_LGBM_CustomEvalFunction, List[_LGBM_CustomEvalFunction]]] = None
    ) -> List[_LGBM_BoosterEvalMethodResultType]:
        """Evaluate for training data.

        Parameters
        ----------
        feval : callable, list of callable, or None, optional (default=None)
            Customized evaluation function.
            Each evaluation function should accept two parameters: preds, eval_data,
            and return (eval_name, eval_result, is_higher_better) or list of such tuples.

                preds : numpy 1-D array or numpy 2-D array (for multi-class task)
                    The predicted values.
                    For multi-class task, preds are numpy 2-D array of shape = [n_samples, n_classes].
                    If custom objective function is used, predicted values are returned before any transformation,
                    e.g. they are raw margin instead of probability of positive class for binary task in this case.
                eval_data : Dataset
                    The training dataset.
                eval_name : str
                    The name of evaluation function (without whitespace).
                eval_result : float
                    The eval result.
                is_higher_better : bool
                    Is eval result higher better, e.g. AUC is ``is_higher_better``.

        Returns
        -------
        result : list
            List with (train_dataset_name, eval_name, eval_result, is_higher_better) tuples.
        """
        return self.__inner_eval(self._train_data_name, 0, feval)

    def eval_valid(
        self,
        feval: Optional[Union[_LGBM_CustomEvalFunction, List[_LGBM_CustomEvalFunction]]] = None
    ) -> List[_LGBM_BoosterEvalMethodResultType]:
        """Evaluate for validation data.

        Parameters
        ----------
        feval : callable, list of callable, or None, optional (default=None)
            Customized evaluation function.
            Each evaluation function should accept two parameters: preds, eval_data,
            and return (eval_name, eval_result, is_higher_better) or list of such tuples.

                preds : numpy 1-D array or numpy 2-D array (for multi-class task)
                    The predicted values.
                    For multi-class task, preds are numpy 2-D array of shape = [n_samples, n_classes].
                    If custom objective function is used, predicted values are returned before any transformation,
                    e.g. they are raw margin instead of probability of positive class for binary task in this case.
                eval_data : Dataset
                    The validation dataset.
                eval_name : str
                    The name of evaluation function (without whitespace).
                eval_result : float
                    The eval result.
                is_higher_better : bool
                    Is eval result higher better, e.g. AUC is ``is_higher_better``.

        Returns
        -------
        result : list
            List with (validation_dataset_name, eval_name, eval_result, is_higher_better) tuples.
        """
        return [item for i in range(1, self.__num_dataset)
                for item in self.__inner_eval(self.name_valid_sets[i - 1], i, feval)]

    def save_model(
        self,
        filename: Union[str, Path],
        num_iteration: Optional[int] = None,
        start_iteration: int = 0,
        importance_type: str = 'split'
    ) -> "Booster":
        """Save Booster to file.

        Parameters
        ----------
        filename : str or pathlib.Path
            Filename to save Booster.
        num_iteration : int or None, optional (default=None)
            Index of the iteration that should be saved.
            If None, if the best iteration exists, it is saved; otherwise, all iterations are saved.
            If <= 0, all iterations are saved.
        start_iteration : int, optional (default=0)
            Start index of the iteration that should be saved.
        importance_type : str, optional (default="split")
            What type of feature importance should be saved.
            If "split", result contains numbers of times the feature is used in a model.
            If "gain", result contains total gains of splits which use the feature.

        Returns
        -------
        self : Booster
            Returns self.
        """
        if num_iteration is None:
            num_iteration = self.best_iteration
        importance_type_int = _FEATURE_IMPORTANCE_TYPE_MAPPER[importance_type]
        _safe_call(_LIB.LGBM_BoosterSaveModel(
            self._handle,
            ctypes.c_int(start_iteration),
            ctypes.c_int(num_iteration),
            ctypes.c_int(importance_type_int),
            _c_str(str(filename))))
        _dump_pandas_categorical(self.pandas_categorical, filename)
        return self

    def shuffle_models(
        self,
        start_iteration: int = 0,
        end_iteration: int = -1
    ) -> "Booster":
        """Shuffle models.

        Parameters
        ----------
        start_iteration : int, optional (default=0)
            The first iteration that will be shuffled.
        end_iteration : int, optional (default=-1)
            The last iteration that will be shuffled.
            If <= 0, means the last available iteration.

        Returns
        -------
        self : Booster
            Booster with shuffled models.
        """
        _safe_call(_LIB.LGBM_BoosterShuffleModels(
            self._handle,
            ctypes.c_int(start_iteration),
            ctypes.c_int(end_iteration)))
        return self

    def model_from_string(self, model_str: str) -> "Booster":
        """Load Booster from a string.

        Parameters
        ----------
        model_str : str
            Model will be loaded from this string.

        Returns
        -------
        self : Booster
            Loaded Booster object.
        """
        # ensure that existing Booster is freed before replacing it
        # with a new one createdfrom file
        _safe_call(_LIB.LGBM_BoosterFree(self._handle))
        self._free_buffer()
        self._handle = ctypes.c_void_p()
        out_num_iterations = ctypes.c_int(0)
        _safe_call(_LIB.LGBM_BoosterLoadModelFromString(
            _c_str(model_str),
            ctypes.byref(out_num_iterations),
            ctypes.byref(self._handle)))
        out_num_class = ctypes.c_int(0)
        _safe_call(_LIB.LGBM_BoosterGetNumClasses(
            self._handle,
            ctypes.byref(out_num_class)))
        self.__num_class = out_num_class.value
        self.pandas_categorical = _load_pandas_categorical(model_str=model_str)
        return self

    def model_to_string(
        self,
        num_iteration: Optional[int] = None,
        start_iteration: int = 0,
        importance_type: str = 'split'
    ) -> str:
        """Save Booster to string.

        Parameters
        ----------
        num_iteration : int or None, optional (default=None)
            Index of the iteration that should be saved.
            If None, if the best iteration exists, it is saved; otherwise, all iterations are saved.
            If <= 0, all iterations are saved.
        start_iteration : int, optional (default=0)
            Start index of the iteration that should be saved.
        importance_type : str, optional (default="split")
            What type of feature importance should be saved.
            If "split", result contains numbers of times the feature is used in a model.
            If "gain", result contains total gains of splits which use the feature.

        Returns
        -------
        str_repr : str
            String representation of Booster.
        """
        if num_iteration is None:
            num_iteration = self.best_iteration
        importance_type_int = _FEATURE_IMPORTANCE_TYPE_MAPPER[importance_type]
        buffer_len = 1 << 20
        tmp_out_len = ctypes.c_int64(0)
        string_buffer = ctypes.create_string_buffer(buffer_len)
        ptr_string_buffer = ctypes.c_char_p(ctypes.addressof(string_buffer))
        _safe_call(_LIB.LGBM_BoosterSaveModelToString(
            self._handle,
            ctypes.c_int(start_iteration),
            ctypes.c_int(num_iteration),
            ctypes.c_int(importance_type_int),
            ctypes.c_int64(buffer_len),
            ctypes.byref(tmp_out_len),
            ptr_string_buffer))
        actual_len = tmp_out_len.value
        # if buffer length is not long enough, re-allocate a buffer
        if actual_len > buffer_len:
            string_buffer = ctypes.create_string_buffer(actual_len)
            ptr_string_buffer = ctypes.c_char_p(ctypes.addressof(string_buffer))
            _safe_call(_LIB.LGBM_BoosterSaveModelToString(
                self._handle,
                ctypes.c_int(start_iteration),
                ctypes.c_int(num_iteration),
                ctypes.c_int(importance_type_int),
                ctypes.c_int64(actual_len),
                ctypes.byref(tmp_out_len),
                ptr_string_buffer))
        ret = string_buffer.value.decode('utf-8')
        ret += _dump_pandas_categorical(self.pandas_categorical)
        return ret

    def dump_model(
        self,
        num_iteration: Optional[int] = None,
        start_iteration: int = 0,
        importance_type: str = 'split',
        object_hook: Optional[Callable[[Dict[str, Any]], Dict[str, Any]]] = None
    ) -> Dict[str, Any]:
        """Dump Booster to JSON format.

        Parameters
        ----------
        num_iteration : int or None, optional (default=None)
            Index of the iteration that should be dumped.
            If None, if the best iteration exists, it is dumped; otherwise, all iterations are dumped.
            If <= 0, all iterations are dumped.
        start_iteration : int, optional (default=0)
            Start index of the iteration that should be dumped.
        importance_type : str, optional (default="split")
            What type of feature importance should be dumped.
            If "split", result contains numbers of times the feature is used in a model.
            If "gain", result contains total gains of splits which use the feature.
        object_hook : callable or None, optional (default=None)
            If not None, ``object_hook`` is a function called while parsing the json
            string returned by the C API. It may be used to alter the json, to store
            specific values while building the json structure. It avoids
            walking through the structure again. It saves a significant amount
            of time if the number of trees is huge.
            Signature is ``def object_hook(node: dict) -> dict``.
            None is equivalent to ``lambda node: node``.
            See documentation of ``json.loads()`` for further details.

        Returns
        -------
        json_repr : dict
            JSON format of Booster.
        """
        if num_iteration is None:
            num_iteration = self.best_iteration
        importance_type_int = _FEATURE_IMPORTANCE_TYPE_MAPPER[importance_type]
        buffer_len = 1 << 20
        tmp_out_len = ctypes.c_int64(0)
        string_buffer = ctypes.create_string_buffer(buffer_len)
        ptr_string_buffer = ctypes.c_char_p(ctypes.addressof(string_buffer))
        _safe_call(_LIB.LGBM_BoosterDumpModel(
            self._handle,
            ctypes.c_int(start_iteration),
            ctypes.c_int(num_iteration),
            ctypes.c_int(importance_type_int),
            ctypes.c_int64(buffer_len),
            ctypes.byref(tmp_out_len),
            ptr_string_buffer))
        actual_len = tmp_out_len.value
        # if buffer length is not long enough, reallocate a buffer
        if actual_len > buffer_len:
            string_buffer = ctypes.create_string_buffer(actual_len)
            ptr_string_buffer = ctypes.c_char_p(ctypes.addressof(string_buffer))
            _safe_call(_LIB.LGBM_BoosterDumpModel(
                self._handle,
                ctypes.c_int(start_iteration),
                ctypes.c_int(num_iteration),
                ctypes.c_int(importance_type_int),
                ctypes.c_int64(actual_len),
                ctypes.byref(tmp_out_len),
                ptr_string_buffer))
        ret = json.loads(string_buffer.value.decode('utf-8'), object_hook=object_hook)
        ret['pandas_categorical'] = json.loads(json.dumps(self.pandas_categorical,
                                                          default=_json_default_with_numpy))
        return ret

    def predict(
        self,
        data: _LGBM_PredictDataType,
        start_iteration: int = 0,
        num_iteration: Optional[int] = None,
        raw_score: bool = False,
        pred_leaf: bool = False,
        pred_contrib: bool = False,
        data_has_header: bool = False,
        validate_features: bool = False,
        **kwargs: Any
    ) -> Union[np.ndarray, scipy.sparse.spmatrix, List[scipy.sparse.spmatrix]]:
        """Make a prediction.

        Parameters
        ----------
        data : str, pathlib.Path, numpy array, pandas DataFrame, pyarrow Table, H2O DataTable's Frame or scipy.sparse
            Data source for prediction.
            If str or pathlib.Path, it represents the path to a text file (CSV, TSV, or LibSVM).
        start_iteration : int, optional (default=0)
            Start index of the iteration to predict.
            If <= 0, starts from the first iteration.
        num_iteration : int or None, optional (default=None)
            Total number of iterations used in the prediction.
            If None, if the best iteration exists and start_iteration <= 0, the best iteration is used;
            otherwise, all iterations from ``start_iteration`` are used (no limits).
            If <= 0, all iterations from ``start_iteration`` are used (no limits).
        raw_score : bool, optional (default=False)
            Whether to predict raw scores.
        pred_leaf : bool, optional (default=False)
            Whether to predict leaf index.
        pred_contrib : bool, optional (default=False)
            Whether to predict feature contributions.

            .. note::

                If you want to get more explanations for your model's predictions using SHAP values,
                like SHAP interaction values,
                you can install the shap package (https://github.com/slundberg/shap).
                Note that unlike the shap package, with ``pred_contrib`` we return a matrix with an extra
                column, where the last column is the expected value.

        data_has_header : bool, optional (default=False)
            Whether the data has header.
            Used only if data is str.
        validate_features : bool, optional (default=False)
            If True, ensure that the features used to predict match the ones used to train.
            Used only if data is pandas DataFrame.
        **kwargs
            Other parameters for the prediction.

        Returns
        -------
        result : numpy array, scipy.sparse or list of scipy.sparse
            Prediction result.
            Can be sparse or a list of sparse objects (each element represents predictions for one class) for feature contributions (when ``pred_contrib=True``).
        """
        predictor = _InnerPredictor.from_booster(
            booster=self,
            pred_parameter=deepcopy(kwargs),
        )
        if num_iteration is None:
            if start_iteration <= 0:
                num_iteration = self.best_iteration
            else:
                num_iteration = -1
        return predictor.predict(
            data=data,
            start_iteration=start_iteration,
            num_iteration=num_iteration,
            raw_score=raw_score,
            pred_leaf=pred_leaf,
            pred_contrib=pred_contrib,
            data_has_header=data_has_header,
            validate_features=validate_features
        )

    def refit(
        self,
        data: _LGBM_TrainDataType,
        label: _LGBM_LabelType,
        decay_rate: float = 0.9,
        reference: Optional[Dataset] = None,
        weight: Optional[_LGBM_WeightType] = None,
        group: Optional[_LGBM_GroupType] = None,
        init_score: Optional[_LGBM_InitScoreType] = None,
        feature_name: _LGBM_FeatureNameConfiguration = 'auto',
        categorical_feature: _LGBM_CategoricalFeatureConfiguration = 'auto',
        dataset_params: Optional[Dict[str, Any]] = None,
        free_raw_data: bool = True,
        validate_features: bool = False,
        **kwargs
    ) -> "Booster":
        """Refit the existing Booster by new data.

        Parameters
        ----------
        data : str, pathlib.Path, numpy array, pandas DataFrame, H2O DataTable's Frame, scipy.sparse, Sequence, list of Sequence or list of numpy array
            Data source for refit.
            If str or pathlib.Path, it represents the path to a text file (CSV, TSV, or LibSVM).
        label : list, numpy 1-D array, pandas Series / one-column DataFrame, pyarrow Array or pyarrow ChunkedArray
            Label for refit.
        decay_rate : float, optional (default=0.9)
            Decay rate of refit,
            will use ``leaf_output = decay_rate * old_leaf_output + (1.0 - decay_rate) * new_leaf_output`` to refit trees.
        reference : Dataset or None, optional (default=None)
            Reference for ``data``.

            .. versionadded:: 4.0.0

        weight : list, numpy 1-D array, pandas Series, pyarrow Array, pyarrow ChunkedArray or None, optional (default=None)
            Weight for each ``data`` instance. Weights should be non-negative.

            .. versionadded:: 4.0.0

        group : list, numpy 1-D array, pandas Series, pyarrow Array, pyarrow ChunkedArray or None, optional (default=None)
            Group/query size for ``data``.
            Only used in the learning-to-rank task.
            sum(group) = n_samples.
            For example, if you have a 100-document dataset with ``group = [10, 20, 40, 10, 10, 10]``, that means that you have 6 groups,
            where the first 10 records are in the first group, records 11-30 are in the second group, records 31-70 are in the third group, etc.

            .. versionadded:: 4.0.0

        init_score : list, list of lists (for multi-class task), numpy array, pandas Series, pandas DataFrame (for multi-class task), pyarrow Array, pyarrow ChunkedArray, pyarrow Table (for multi-class task) or None, optional (default=None)
            Init score for ``data``.

            .. versionadded:: 4.0.0

        feature_name : list of str, or 'auto', optional (default="auto")
            Feature names for ``data``.
            If 'auto' and data is pandas DataFrame, data columns names are used.

            .. versionadded:: 4.0.0

        categorical_feature : list of str or int, or 'auto', optional (default="auto")
            Categorical features for ``data``.
            If list of int, interpreted as indices.
            If list of str, interpreted as feature names (need to specify ``feature_name`` as well).
            If 'auto' and data is pandas DataFrame, pandas unordered categorical columns are used.
            All values in categorical features will be cast to int32 and thus should be less than int32 max value (2147483647).
            Large values could be memory consuming. Consider using consecutive integers starting from zero.
            All negative values in categorical features will be treated as missing values.
            The output cannot be monotonically constrained with respect to a categorical feature.
            Floating point numbers in categorical features will be rounded towards 0.

            .. versionadded:: 4.0.0

        dataset_params : dict or None, optional (default=None)
            Other parameters for Dataset ``data``.

            .. versionadded:: 4.0.0

        free_raw_data : bool, optional (default=True)
            If True, raw data is freed after constructing inner Dataset for ``data``.

            .. versionadded:: 4.0.0

        validate_features : bool, optional (default=False)
            If True, ensure that the features used to refit the model match the original ones.
            Used only if data is pandas DataFrame.

            .. versionadded:: 4.0.0

        **kwargs
            Other parameters for refit.
            These parameters will be passed to ``predict`` method.

        Returns
        -------
        result : Booster
            Refitted Booster.
        """
        if self.__set_objective_to_none:
            raise LightGBMError('Cannot refit due to null objective function.')
        if dataset_params is None:
            dataset_params = {}
        predictor = _InnerPredictor.from_booster(
            booster=self,
            pred_parameter=deepcopy(kwargs)
        )
        leaf_preds: np.ndarray = predictor.predict(  # type: ignore[assignment]
            data=data,
            start_iteration=-1,
            pred_leaf=True,
            validate_features=validate_features
        )
        nrow, ncol = leaf_preds.shape
        out_is_linear = ctypes.c_int(0)
        _safe_call(_LIB.LGBM_BoosterGetLinear(
            self._handle,
            ctypes.byref(out_is_linear)))
        new_params = _choose_param_value(
            main_param_name="linear_tree",
            params=self.params,
            default_value=None
        )
        new_params["linear_tree"] = bool(out_is_linear.value)
        new_params.update(dataset_params)
        train_set = Dataset(
            data=data,
            label=label,
            reference=reference,
            weight=weight,
            group=group,
            init_score=init_score,
            feature_name=feature_name,
            categorical_feature=categorical_feature,
            params=new_params,
            free_raw_data=free_raw_data,
        )
        new_params['refit_decay_rate'] = decay_rate
        new_booster = Booster(new_params, train_set)
        # Copy models
        _safe_call(_LIB.LGBM_BoosterMerge(
            new_booster._handle,
            predictor._handle))
        leaf_preds = leaf_preds.reshape(-1)
        ptr_data, _, _ = _c_int_array(leaf_preds)
        _safe_call(_LIB.LGBM_BoosterRefit(
            new_booster._handle,
            ptr_data,
            ctypes.c_int32(nrow),
            ctypes.c_int32(ncol)))
        new_booster._network = self._network
        return new_booster

    def get_leaf_output(self, tree_id: int, leaf_id: int) -> float:
        """Get the output of a leaf.

        Parameters
        ----------
        tree_id : int
            The index of the tree.
        leaf_id : int
            The index of the leaf in the tree.

        Returns
        -------
        result : float
            The output of the leaf.
        """
        ret = ctypes.c_double(0)
        _safe_call(_LIB.LGBM_BoosterGetLeafValue(
            self._handle,
            ctypes.c_int(tree_id),
            ctypes.c_int(leaf_id),
            ctypes.byref(ret)))
        return ret.value

    def set_leaf_output(
        self,
        tree_id: int,
        leaf_id: int,
        value: float,
    ) -> 'Booster':
        """Set the output of a leaf.

        .. versionadded:: 4.0.0

        Parameters
        ----------
        tree_id : int
            The index of the tree.
        leaf_id : int
            The index of the leaf in the tree.
        value : float
            Value to set as the output of the leaf.

        Returns
        -------
        self : Booster
            Booster with the leaf output set.
        """
        _safe_call(
            _LIB.LGBM_BoosterSetLeafValue(
                self._handle,
                ctypes.c_int(tree_id),
                ctypes.c_int(leaf_id),
                ctypes.c_double(value)
            )
        )
        return self

    def num_feature(self) -> int:
        """Get number of features.

        Returns
        -------
        num_feature : int
            The number of features.
        """
        out_num_feature = ctypes.c_int(0)
        _safe_call(_LIB.LGBM_BoosterGetNumFeature(
            self._handle,
            ctypes.byref(out_num_feature)))
        return out_num_feature.value

    def feature_name(self) -> List[str]:
        """Get names of features.

        Returns
        -------
        result : list of str
            List with names of features.
        """
        num_feature = self.num_feature()
        # Get name of features
        tmp_out_len = ctypes.c_int(0)
        reserved_string_buffer_size = 255
        required_string_buffer_size = ctypes.c_size_t(0)
        string_buffers = [ctypes.create_string_buffer(reserved_string_buffer_size) for _ in range(num_feature)]
        ptr_string_buffers = (ctypes.c_char_p * num_feature)(*map(ctypes.addressof, string_buffers))  # type: ignore[misc]
        _safe_call(_LIB.LGBM_BoosterGetFeatureNames(
            self._handle,
            ctypes.c_int(num_feature),
            ctypes.byref(tmp_out_len),
            ctypes.c_size_t(reserved_string_buffer_size),
            ctypes.byref(required_string_buffer_size),
            ptr_string_buffers))
        if num_feature != tmp_out_len.value:
            raise ValueError("Length of feature names doesn't equal with num_feature")
        actual_string_buffer_size = required_string_buffer_size.value
        # if buffer length is not long enough, reallocate buffers
        if reserved_string_buffer_size < actual_string_buffer_size:
            string_buffers = [ctypes.create_string_buffer(actual_string_buffer_size) for _ in range(num_feature)]
            ptr_string_buffers = (ctypes.c_char_p * num_feature)(*map(ctypes.addressof, string_buffers))  # type: ignore[misc]
            _safe_call(_LIB.LGBM_BoosterGetFeatureNames(
                self._handle,
                ctypes.c_int(num_feature),
                ctypes.byref(tmp_out_len),
                ctypes.c_size_t(actual_string_buffer_size),
                ctypes.byref(required_string_buffer_size),
                ptr_string_buffers))
        return [string_buffers[i].value.decode('utf-8') for i in range(num_feature)]

    def feature_importance(
        self,
        importance_type: str = 'split',
        iteration: Optional[int] = None
    ) -> np.ndarray:
        """Get feature importances.

        Parameters
        ----------
        importance_type : str, optional (default="split")
            How the importance is calculated.
            If "split", result contains numbers of times the feature is used in a model.
            If "gain", result contains total gains of splits which use the feature.
        iteration : int or None, optional (default=None)
            Limit number of iterations in the feature importance calculation.
            If None, if the best iteration exists, it is used; otherwise, all trees are used.
            If <= 0, all trees are used (no limits).

        Returns
        -------
        result : numpy array
            Array with feature importances.
        """
        if iteration is None:
            iteration = self.best_iteration
        importance_type_int = _FEATURE_IMPORTANCE_TYPE_MAPPER[importance_type]
        result = np.empty(self.num_feature(), dtype=np.float64)
        _safe_call(_LIB.LGBM_BoosterFeatureImportance(
            self._handle,
            ctypes.c_int(iteration),
            ctypes.c_int(importance_type_int),
            result.ctypes.data_as(ctypes.POINTER(ctypes.c_double))))
        if importance_type_int == _C_API_FEATURE_IMPORTANCE_SPLIT:
            return result.astype(np.int32)
        else:
            return result

    def get_split_value_histogram(
        self,
        feature: Union[int, str],
        bins: Optional[Union[int, str]] = None,
        xgboost_style: bool = False
    ) -> Union[Tuple[np.ndarray, np.ndarray], np.ndarray, pd_DataFrame]:
        """Get split value histogram for the specified feature.

        Parameters
        ----------
        feature : int or str
            The feature name or index the histogram is calculated for.
            If int, interpreted as index.
            If str, interpreted as name.

            .. warning::

                Categorical features are not supported.

        bins : int, str or None, optional (default=None)
            The maximum number of bins.
            If None, or int and > number of unique split values and ``xgboost_style=True``,
            the number of bins equals number of unique split values.
            If str, it should be one from the list of the supported values by ``numpy.histogram()`` function.
        xgboost_style : bool, optional (default=False)
            Whether the returned result should be in the same form as it is in XGBoost.
            If False, the returned value is tuple of 2 numpy arrays as it is in ``numpy.histogram()`` function.
            If True, the returned value is matrix, in which the first column is the right edges of non-empty bins
            and the second one is the histogram values.

        Returns
        -------
        result_tuple : tuple of 2 numpy arrays
            If ``xgboost_style=False``, the values of the histogram of used splitting values for the specified feature
            and the bin edges.
        result_array_like : numpy array or pandas DataFrame (if pandas is installed)
            If ``xgboost_style=True``, the histogram of used splitting values for the specified feature.
        """
        def add(root: Dict[str, Any]) -> None:
            """Recursively add thresholds."""
            if 'split_index' in root:  # non-leaf
                if feature_names is not None and isinstance(feature, str):
                    split_feature = feature_names[root['split_feature']]
                else:
                    split_feature = root['split_feature']
                if split_feature == feature:
                    if isinstance(root['threshold'], str):
                        raise LightGBMError('Cannot compute split value histogram for the categorical feature')
                    else:
                        values.append(root['threshold'])
                add(root['left_child'])
                add(root['right_child'])

        model = self.dump_model()
        feature_names = model.get('feature_names')
        tree_infos = model['tree_info']
        values: List[float] = []
        for tree_info in tree_infos:
            add(tree_info['tree_structure'])

        if bins is None or isinstance(bins, int) and xgboost_style:
            n_unique = len(np.unique(values))
            bins = max(min(n_unique, bins) if bins is not None else n_unique, 1)
        hist, bin_edges = np.histogram(values, bins=bins)
        if xgboost_style:
            ret = np.column_stack((bin_edges[1:], hist))
            ret = ret[ret[:, 1] > 0]
            if PANDAS_INSTALLED:
                return pd_DataFrame(ret, columns=['SplitValue', 'Count'])
            else:
                return ret
        else:
            return hist, bin_edges

    def __inner_eval(
        self,
        data_name: str,
        data_idx: int,
        feval: Optional[Union[_LGBM_CustomEvalFunction, List[_LGBM_CustomEvalFunction]]]
    ) -> List[_LGBM_BoosterEvalMethodResultType]:
        """Evaluate training or validation data."""
        if data_idx >= self.__num_dataset:
            raise ValueError("Data_idx should be smaller than number of dataset")
        self.__get_eval_info()
        ret = []
        if self.__num_inner_eval > 0:
            result = np.empty(self.__num_inner_eval, dtype=np.float64)
            tmp_out_len = ctypes.c_int(0)
            _safe_call(_LIB.LGBM_BoosterGetEval(
                self._handle,
                ctypes.c_int(data_idx),
                ctypes.byref(tmp_out_len),
                result.ctypes.data_as(ctypes.POINTER(ctypes.c_double))))
            if tmp_out_len.value != self.__num_inner_eval:
                raise ValueError("Wrong length of eval results")
            for i in range(self.__num_inner_eval):
                ret.append((data_name, self.__name_inner_eval[i],
                            result[i], self.__higher_better_inner_eval[i]))
        if callable(feval):
            feval = [feval]
        if feval is not None:
            if data_idx == 0:
                cur_data = self.train_set
            else:
                cur_data = self.valid_sets[data_idx - 1]
            for eval_function in feval:
                if eval_function is None:
                    continue
                feval_ret = eval_function(self.__inner_predict(data_idx), cur_data)
                if isinstance(feval_ret, list):
                    for eval_name, val, is_higher_better in feval_ret:
                        ret.append((data_name, eval_name, val, is_higher_better))
                else:
                    eval_name, val, is_higher_better = feval_ret
                    ret.append((data_name, eval_name, val, is_higher_better))
        return ret

    def __inner_predict(self, data_idx: int) -> np.ndarray:
        """Predict for training and validation dataset."""
        if data_idx >= self.__num_dataset:
            raise ValueError("Data_idx should be smaller than number of dataset")
        if self.__inner_predict_buffer[data_idx] is None:
            if data_idx == 0:
                n_preds = self.train_set.num_data() * self.__num_class
            else:
                n_preds = self.valid_sets[data_idx - 1].num_data() * self.__num_class
            self.__inner_predict_buffer[data_idx] = np.empty(n_preds, dtype=np.float64)
        # avoid to predict many time in one iteration
        if not self.__is_predicted_cur_iter[data_idx]:
            tmp_out_len = ctypes.c_int64(0)
            data_ptr = self.__inner_predict_buffer[data_idx].ctypes.data_as(ctypes.POINTER(ctypes.c_double))  # type: ignore[union-attr]
            _safe_call(_LIB.LGBM_BoosterGetPredict(
                self._handle,
                ctypes.c_int(data_idx),
                ctypes.byref(tmp_out_len),
                data_ptr))
            if tmp_out_len.value != len(self.__inner_predict_buffer[data_idx]):  # type: ignore[arg-type]
                raise ValueError(f"Wrong length of predict results for data {data_idx}")
            self.__is_predicted_cur_iter[data_idx] = True
        result: np.ndarray = self.__inner_predict_buffer[data_idx]  # type: ignore[assignment]
        if self.__num_class > 1:
            num_data = result.size // self.__num_class
            result = result.reshape(num_data, self.__num_class, order='F')
        return result

    def __get_eval_info(self) -> None:
        """Get inner evaluation count and names."""
        if self.__need_reload_eval_info:
            self.__need_reload_eval_info = False
            out_num_eval = ctypes.c_int(0)
            # Get num of inner evals
            _safe_call(_LIB.LGBM_BoosterGetEvalCounts(
                self._handle,
                ctypes.byref(out_num_eval)))
            self.__num_inner_eval = out_num_eval.value
            if self.__num_inner_eval > 0:
                # Get name of eval metrics
                tmp_out_len = ctypes.c_int(0)
                reserved_string_buffer_size = 255
                required_string_buffer_size = ctypes.c_size_t(0)
                string_buffers = [
                    ctypes.create_string_buffer(reserved_string_buffer_size) for _ in range(self.__num_inner_eval)
                ]
                ptr_string_buffers = (ctypes.c_char_p * self.__num_inner_eval)(*map(ctypes.addressof, string_buffers))  # type: ignore[misc]
                _safe_call(_LIB.LGBM_BoosterGetEvalNames(
                    self._handle,
                    ctypes.c_int(self.__num_inner_eval),
                    ctypes.byref(tmp_out_len),
                    ctypes.c_size_t(reserved_string_buffer_size),
                    ctypes.byref(required_string_buffer_size),
                    ptr_string_buffers))
                if self.__num_inner_eval != tmp_out_len.value:
                    raise ValueError("Length of eval names doesn't equal with num_evals")
                actual_string_buffer_size = required_string_buffer_size.value
                # if buffer length is not long enough, reallocate buffers
                if reserved_string_buffer_size < actual_string_buffer_size:
                    string_buffers = [
                        ctypes.create_string_buffer(actual_string_buffer_size) for _ in range(self.__num_inner_eval)
                    ]
                    ptr_string_buffers = (ctypes.c_char_p * self.__num_inner_eval)(*map(ctypes.addressof, string_buffers))  # type: ignore[misc]
                    _safe_call(_LIB.LGBM_BoosterGetEvalNames(
                        self._handle,
                        ctypes.c_int(self.__num_inner_eval),
                        ctypes.byref(tmp_out_len),
                        ctypes.c_size_t(actual_string_buffer_size),
                        ctypes.byref(required_string_buffer_size),
                        ptr_string_buffers))
                self.__name_inner_eval = [
                    string_buffers[i].value.decode('utf-8') for i in range(self.__num_inner_eval)
                ]
                self.__higher_better_inner_eval = [
                    name.startswith(('auc', 'ndcg@', 'map@', 'average_precision')) for name in self.__name_inner_eval
                ]