1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
|
# coding: utf-8
"""Plotting library."""
import math
from copy import deepcopy
from io import BytesIO
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
from .basic import Booster, _data_from_pandas, _is_zero, _log_warning, _MissingType
from .compat import GRAPHVIZ_INSTALLED, MATPLOTLIB_INSTALLED, pd_DataFrame
from .sklearn import LGBMModel
__all__ = [
'create_tree_digraph',
'plot_importance',
'plot_metric',
'plot_split_value_histogram',
'plot_tree',
]
def _check_not_tuple_of_2_elements(obj: Any, obj_name: str) -> None:
"""Check object is not tuple or does not have 2 elements."""
if not isinstance(obj, tuple) or len(obj) != 2:
raise TypeError(f"{obj_name} must be a tuple of 2 elements.")
def _float2str(value: float, precision: Optional[int]) -> str:
return (f"{value:.{precision}f}"
if precision is not None and not isinstance(value, str)
else str(value))
def plot_importance(
booster: Union[Booster, LGBMModel],
ax=None,
height: float = 0.2,
xlim: Optional[Tuple[float, float]] = None,
ylim: Optional[Tuple[float, float]] = None,
title: Optional[str] = 'Feature importance',
xlabel: Optional[str] = 'Feature importance',
ylabel: Optional[str] = 'Features',
importance_type: str = 'auto',
max_num_features: Optional[int] = None,
ignore_zero: bool = True,
figsize: Optional[Tuple[float, float]] = None,
dpi: Optional[int] = None,
grid: bool = True,
precision: Optional[int] = 3,
**kwargs: Any
) -> Any:
"""Plot model's feature importances.
Parameters
----------
booster : Booster or LGBMModel
Booster or LGBMModel instance which feature importance should be plotted.
ax : matplotlib.axes.Axes or None, optional (default=None)
Target axes instance.
If None, new figure and axes will be created.
height : float, optional (default=0.2)
Bar height, passed to ``ax.barh()``.
xlim : tuple of 2 elements or None, optional (default=None)
Tuple passed to ``ax.xlim()``.
ylim : tuple of 2 elements or None, optional (default=None)
Tuple passed to ``ax.ylim()``.
title : str or None, optional (default="Feature importance")
Axes title.
If None, title is disabled.
xlabel : str or None, optional (default="Feature importance")
X-axis title label.
If None, title is disabled.
@importance_type@ placeholder can be used, and it will be replaced with the value of ``importance_type`` parameter.
ylabel : str or None, optional (default="Features")
Y-axis title label.
If None, title is disabled.
importance_type : str, optional (default="auto")
How the importance is calculated.
If "auto", if ``booster`` parameter is LGBMModel, ``booster.importance_type`` attribute is used; "split" otherwise.
If "split", result contains numbers of times the feature is used in a model.
If "gain", result contains total gains of splits which use the feature.
max_num_features : int or None, optional (default=None)
Max number of top features displayed on plot.
If None or <1, all features will be displayed.
ignore_zero : bool, optional (default=True)
Whether to ignore features with zero importance.
figsize : tuple of 2 elements or None, optional (default=None)
Figure size.
dpi : int or None, optional (default=None)
Resolution of the figure.
grid : bool, optional (default=True)
Whether to add a grid for axes.
precision : int or None, optional (default=3)
Used to restrict the display of floating point values to a certain precision.
**kwargs
Other parameters passed to ``ax.barh()``.
Returns
-------
ax : matplotlib.axes.Axes
The plot with model's feature importances.
"""
if MATPLOTLIB_INSTALLED:
import matplotlib.pyplot as plt
else:
raise ImportError('You must install matplotlib and restart your session to plot importance.')
if isinstance(booster, LGBMModel):
if importance_type == "auto":
importance_type = booster.importance_type
booster = booster.booster_
elif isinstance(booster, Booster):
if importance_type == "auto":
importance_type = "split"
else:
raise TypeError('booster must be Booster or LGBMModel.')
importance = booster.feature_importance(importance_type=importance_type)
feature_name = booster.feature_name()
if not len(importance):
raise ValueError("Booster's feature_importance is empty.")
tuples = sorted(zip(feature_name, importance), key=lambda x: x[1])
if ignore_zero:
tuples = [x for x in tuples if x[1] > 0]
if max_num_features is not None and max_num_features > 0:
tuples = tuples[-max_num_features:]
labels, values = zip(*tuples)
if ax is None:
if figsize is not None:
_check_not_tuple_of_2_elements(figsize, 'figsize')
_, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi)
ylocs = np.arange(len(values))
ax.barh(ylocs, values, align='center', height=height, **kwargs)
for x, y in zip(values, ylocs):
ax.text(x + 1, y,
_float2str(x, precision) if importance_type == 'gain' else x,
va='center')
ax.set_yticks(ylocs)
ax.set_yticklabels(labels)
if xlim is not None:
_check_not_tuple_of_2_elements(xlim, 'xlim')
else:
xlim = (0, max(values) * 1.1)
ax.set_xlim(xlim)
if ylim is not None:
_check_not_tuple_of_2_elements(ylim, 'ylim')
else:
ylim = (-1, len(values))
ax.set_ylim(ylim)
if title is not None:
ax.set_title(title)
if xlabel is not None:
xlabel = xlabel.replace('@importance_type@', importance_type)
ax.set_xlabel(xlabel)
if ylabel is not None:
ax.set_ylabel(ylabel)
ax.grid(grid)
return ax
def plot_split_value_histogram(
booster: Union[Booster, LGBMModel],
feature: Union[int, str],
bins: Union[int, str, None] = None,
ax=None,
width_coef: float = 0.8,
xlim: Optional[Tuple[float, float]] = None,
ylim: Optional[Tuple[float, float]] = None,
title: Optional[str] = 'Split value histogram for feature with @index/name@ @feature@',
xlabel: Optional[str] = 'Feature split value',
ylabel: Optional[str] = 'Count',
figsize: Optional[Tuple[float, float]] = None,
dpi: Optional[int] = None,
grid: bool = True,
**kwargs: Any
) -> Any:
"""Plot split value histogram for the specified feature of the model.
Parameters
----------
booster : Booster or LGBMModel
Booster or LGBMModel instance of which feature split value histogram should be plotted.
feature : int or str
The feature name or index the histogram is plotted for.
If int, interpreted as index.
If str, interpreted as name.
bins : int, str or None, optional (default=None)
The maximum number of bins.
If None, the number of bins equals number of unique split values.
If str, it should be one from the list of the supported values by ``numpy.histogram()`` function.
ax : matplotlib.axes.Axes or None, optional (default=None)
Target axes instance.
If None, new figure and axes will be created.
width_coef : float, optional (default=0.8)
Coefficient for histogram bar width.
xlim : tuple of 2 elements or None, optional (default=None)
Tuple passed to ``ax.xlim()``.
ylim : tuple of 2 elements or None, optional (default=None)
Tuple passed to ``ax.ylim()``.
title : str or None, optional (default="Split value histogram for feature with @index/name@ @feature@")
Axes title.
If None, title is disabled.
@feature@ placeholder can be used, and it will be replaced with the value of ``feature`` parameter.
@index/name@ placeholder can be used,
and it will be replaced with ``index`` word in case of ``int`` type ``feature`` parameter
or ``name`` word in case of ``str`` type ``feature`` parameter.
xlabel : str or None, optional (default="Feature split value")
X-axis title label.
If None, title is disabled.
ylabel : str or None, optional (default="Count")
Y-axis title label.
If None, title is disabled.
figsize : tuple of 2 elements or None, optional (default=None)
Figure size.
dpi : int or None, optional (default=None)
Resolution of the figure.
grid : bool, optional (default=True)
Whether to add a grid for axes.
**kwargs
Other parameters passed to ``ax.bar()``.
Returns
-------
ax : matplotlib.axes.Axes
The plot with specified model's feature split value histogram.
"""
if MATPLOTLIB_INSTALLED:
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
else:
raise ImportError('You must install matplotlib and restart your session to plot split value histogram.')
if isinstance(booster, LGBMModel):
booster = booster.booster_
elif not isinstance(booster, Booster):
raise TypeError('booster must be Booster or LGBMModel.')
hist, split_bins = booster.get_split_value_histogram(feature=feature, bins=bins, xgboost_style=False)
if np.count_nonzero(hist) == 0:
raise ValueError('Cannot plot split value histogram, '
f'because feature {feature} was not used in splitting')
width = width_coef * (split_bins[1] - split_bins[0])
centred = (split_bins[:-1] + split_bins[1:]) / 2
if ax is None:
if figsize is not None:
_check_not_tuple_of_2_elements(figsize, 'figsize')
_, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi)
ax.bar(centred, hist, align='center', width=width, **kwargs)
if xlim is not None:
_check_not_tuple_of_2_elements(xlim, 'xlim')
else:
range_result = split_bins[-1] - split_bins[0]
xlim = (split_bins[0] - range_result * 0.2, split_bins[-1] + range_result * 0.2)
ax.set_xlim(xlim)
ax.yaxis.set_major_locator(MaxNLocator(integer=True))
if ylim is not None:
_check_not_tuple_of_2_elements(ylim, 'ylim')
else:
ylim = (0, max(hist) * 1.1)
ax.set_ylim(ylim)
if title is not None:
title = title.replace('@feature@', str(feature))
title = title.replace('@index/name@', ('name' if isinstance(feature, str) else 'index'))
ax.set_title(title)
if xlabel is not None:
ax.set_xlabel(xlabel)
if ylabel is not None:
ax.set_ylabel(ylabel)
ax.grid(grid)
return ax
def plot_metric(
booster: Union[Dict, LGBMModel],
metric: Optional[str] = None,
dataset_names: Optional[List[str]] = None,
ax=None,
xlim: Optional[Tuple[float, float]] = None,
ylim: Optional[Tuple[float, float]] = None,
title: Optional[str] = 'Metric during training',
xlabel: Optional[str] = 'Iterations',
ylabel: Optional[str] = '@metric@',
figsize: Optional[Tuple[float, float]] = None,
dpi: Optional[int] = None,
grid: bool = True
) -> Any:
"""Plot one metric during training.
Parameters
----------
booster : dict or LGBMModel
Dictionary returned from ``lightgbm.train()`` or LGBMModel instance.
metric : str or None, optional (default=None)
The metric name to plot.
Only one metric supported because different metrics have various scales.
If None, first metric picked from dictionary (according to hashcode).
dataset_names : list of str, or None, optional (default=None)
List of the dataset names which are used to calculate metric to plot.
If None, all datasets are used.
ax : matplotlib.axes.Axes or None, optional (default=None)
Target axes instance.
If None, new figure and axes will be created.
xlim : tuple of 2 elements or None, optional (default=None)
Tuple passed to ``ax.xlim()``.
ylim : tuple of 2 elements or None, optional (default=None)
Tuple passed to ``ax.ylim()``.
title : str or None, optional (default="Metric during training")
Axes title.
If None, title is disabled.
xlabel : str or None, optional (default="Iterations")
X-axis title label.
If None, title is disabled.
ylabel : str or None, optional (default="@metric@")
Y-axis title label.
If 'auto', metric name is used.
If None, title is disabled.
@metric@ placeholder can be used, and it will be replaced with metric name.
figsize : tuple of 2 elements or None, optional (default=None)
Figure size.
dpi : int or None, optional (default=None)
Resolution of the figure.
grid : bool, optional (default=True)
Whether to add a grid for axes.
Returns
-------
ax : matplotlib.axes.Axes
The plot with metric's history over the training.
"""
if MATPLOTLIB_INSTALLED:
import matplotlib.pyplot as plt
else:
raise ImportError('You must install matplotlib and restart your session to plot metric.')
if isinstance(booster, LGBMModel):
eval_results = deepcopy(booster.evals_result_)
elif isinstance(booster, dict):
eval_results = deepcopy(booster)
elif isinstance(booster, Booster):
raise TypeError("booster must be dict or LGBMModel. To use plot_metric with Booster type, first record the metrics using record_evaluation callback then pass that to plot_metric as argument `booster`")
else:
raise TypeError('booster must be dict or LGBMModel.')
num_data = len(eval_results)
if not num_data:
raise ValueError('eval results cannot be empty.')
if ax is None:
if figsize is not None:
_check_not_tuple_of_2_elements(figsize, 'figsize')
_, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi)
if dataset_names is None:
dataset_names_iter = iter(eval_results.keys())
elif not isinstance(dataset_names, (list, tuple, set)) or not dataset_names:
raise ValueError('dataset_names should be iterable and cannot be empty')
else:
dataset_names_iter = iter(dataset_names)
name = next(dataset_names_iter) # take one as sample
metrics_for_one = eval_results[name]
num_metric = len(metrics_for_one)
if metric is None:
if num_metric > 1:
_log_warning("More than one metric available, picking one to plot.")
metric, results = metrics_for_one.popitem()
else:
if metric not in metrics_for_one:
raise KeyError('No given metric in eval results.')
results = metrics_for_one[metric]
num_iteration = len(results)
max_result = max(results)
min_result = min(results)
x_ = range(num_iteration)
ax.plot(x_, results, label=name)
for name in dataset_names_iter:
metrics_for_one = eval_results[name]
results = metrics_for_one[metric]
max_result = max(max(results), max_result)
min_result = min(min(results), min_result)
ax.plot(x_, results, label=name)
ax.legend(loc='best')
if xlim is not None:
_check_not_tuple_of_2_elements(xlim, 'xlim')
else:
xlim = (0, num_iteration)
ax.set_xlim(xlim)
if ylim is not None:
_check_not_tuple_of_2_elements(ylim, 'ylim')
else:
range_result = max_result - min_result
ylim = (min_result - range_result * 0.2, max_result + range_result * 0.2)
ax.set_ylim(ylim)
if title is not None:
ax.set_title(title)
if xlabel is not None:
ax.set_xlabel(xlabel)
if ylabel is not None:
ylabel = ylabel.replace('@metric@', metric)
ax.set_ylabel(ylabel)
ax.grid(grid)
return ax
def _determine_direction_for_numeric_split(
fval: float,
threshold: float,
missing_type_str: str,
default_left: bool,
) -> str:
missing_type = _MissingType(missing_type_str)
if math.isnan(fval) and missing_type != _MissingType.NAN:
fval = 0.0
if ((missing_type == _MissingType.ZERO and _is_zero(fval))
or (missing_type == _MissingType.NAN and math.isnan(fval))):
direction = 'left' if default_left else 'right'
else:
direction = 'left' if fval <= threshold else 'right'
return direction
def _determine_direction_for_categorical_split(fval: float, thresholds: str) -> str:
if math.isnan(fval) or int(fval) < 0:
return 'right'
int_thresholds = {int(t) for t in thresholds.split('||')}
return 'left' if int(fval) in int_thresholds else 'right'
def _to_graphviz(
tree_info: Dict[str, Any],
show_info: List[str],
feature_names: Union[List[str], None],
precision: Optional[int],
orientation: str,
constraints: Optional[List[int]],
example_case: Optional[Union[np.ndarray, pd_DataFrame]],
max_category_values: int,
**kwargs: Any
) -> Any:
"""Convert specified tree to graphviz instance.
See:
- https://graphviz.readthedocs.io/en/stable/api.html#digraph
"""
if GRAPHVIZ_INSTALLED:
from graphviz import Digraph
else:
raise ImportError('You must install graphviz and restart your session to plot tree.')
def add(
root: Dict[str, Any],
total_count: int,
parent: Optional[str],
decision: Optional[str],
highlight: bool
) -> None:
"""Recursively add node or edge."""
fillcolor = 'white'
style = ''
tooltip = None
if highlight:
color = 'blue'
penwidth = '3'
else:
color = 'black'
penwidth = '1'
if 'split_index' in root: # non-leaf
shape = "rectangle"
l_dec = 'yes'
r_dec = 'no'
threshold = root['threshold']
if root['decision_type'] == '<=':
operator = "≤"
elif root['decision_type'] == '==':
operator = "="
else:
raise ValueError('Invalid decision type in tree model.')
name = f"split{root['split_index']}"
split_feature = root['split_feature']
if feature_names is not None:
label = f"<B>{feature_names[split_feature]}</B> {operator}"
else:
label = f"feature <B>{split_feature}</B> {operator} "
direction = None
if example_case is not None:
if root['decision_type'] == '==':
direction = _determine_direction_for_categorical_split(
fval=example_case[split_feature],
thresholds=root['threshold']
)
else:
direction = _determine_direction_for_numeric_split(
fval=example_case[split_feature],
threshold=root['threshold'],
missing_type_str=root['missing_type'],
default_left=root['default_left']
)
if root['decision_type'] == '==':
category_values = root['threshold'].split('||')
if len(category_values) > max_category_values:
tooltip = root['threshold']
threshold = '||'.join(category_values[:2]) + '||...||' + category_values[-1]
label += f"<B>{_float2str(threshold, precision)}</B>"
for info in ['split_gain', 'internal_value', 'internal_weight', "internal_count", "data_percentage"]:
if info in show_info:
output = info.split('_')[-1]
if info in {'split_gain', 'internal_value', 'internal_weight'}:
label += f"<br/>{_float2str(root[info], precision)} {output}"
elif info == 'internal_count':
label += f"<br/>{output}: {root[info]}"
elif info == "data_percentage":
label += f"<br/>{_float2str(root['internal_count'] / total_count * 100, 2)}% of data"
if constraints:
if constraints[root['split_feature']] == 1:
fillcolor = "#ddffdd" # light green
if constraints[root['split_feature']] == -1:
fillcolor = "#ffdddd" # light red
style = "filled"
label = f"<{label}>"
add(
root=root['left_child'],
total_count=total_count,
parent=name,
decision=l_dec,
highlight=highlight and direction == "left"
)
add(
root=root['right_child'],
total_count=total_count,
parent=name,
decision=r_dec,
highlight=highlight and direction == "right"
)
else: # leaf
shape = "ellipse"
name = f"leaf{root['leaf_index']}"
label = f"leaf {root['leaf_index']}: "
label += f"<B>{_float2str(root['leaf_value'], precision)}</B>"
if 'leaf_weight' in show_info:
label += f"<br/>{_float2str(root['leaf_weight'], precision)} weight"
if 'leaf_count' in show_info:
label += f"<br/>count: {root['leaf_count']}"
if "data_percentage" in show_info:
label += f"<br/>{_float2str(root['leaf_count'] / total_count * 100, 2)}% of data"
label = f"<{label}>"
graph.node(name, label=label, shape=shape, style=style, fillcolor=fillcolor, color=color, penwidth=penwidth, tooltip=tooltip)
if parent is not None:
graph.edge(parent, name, decision, color=color, penwidth=penwidth)
graph = Digraph(**kwargs)
rankdir = "LR" if orientation == "horizontal" else "TB"
graph.attr("graph", nodesep="0.05", ranksep="0.3", rankdir=rankdir)
if "internal_count" in tree_info['tree_structure']:
add(
root=tree_info['tree_structure'],
total_count=tree_info['tree_structure']["internal_count"],
parent=None,
decision=None,
highlight=example_case is not None
)
else:
raise Exception("Cannot plot trees with no split")
if constraints:
# "#ddffdd" is light green, "#ffdddd" is light red
legend = """<
<TABLE BORDER="0" CELLBORDER="1" CELLSPACING="0" CELLPADDING="4">
<TR>
<TD COLSPAN="2"><B>Monotone constraints</B></TD>
</TR>
<TR>
<TD>Increasing</TD>
<TD BGCOLOR="#ddffdd"></TD>
</TR>
<TR>
<TD>Decreasing</TD>
<TD BGCOLOR="#ffdddd"></TD>
</TR>
</TABLE>
>"""
graph.node("legend", label=legend, shape="rectangle", color="white")
return graph
def create_tree_digraph(
booster: Union[Booster, LGBMModel],
tree_index: int = 0,
show_info: Optional[List[str]] = None,
precision: Optional[int] = 3,
orientation: str = 'horizontal',
example_case: Optional[Union[np.ndarray, pd_DataFrame]] = None,
max_category_values: int = 10,
**kwargs: Any
) -> Any:
"""Create a digraph representation of specified tree.
Each node in the graph represents a node in the tree.
Non-leaf nodes have labels like ``Column_10 <= 875.9``, which means
"this node splits on the feature named "Column_10", with threshold 875.9".
Leaf nodes have labels like ``leaf 2: 0.422``, which means "this node is a
leaf node, and the predicted value for records that fall into this node
is 0.422". The number (``2``) is an internal unique identifier and doesn't
have any special meaning.
.. note::
For more information please visit
https://graphviz.readthedocs.io/en/stable/api.html#digraph.
Parameters
----------
booster : Booster or LGBMModel
Booster or LGBMModel instance to be converted.
tree_index : int, optional (default=0)
The index of a target tree to convert.
show_info : list of str, or None, optional (default=None)
What information should be shown in nodes.
- ``'split_gain'`` : gain from adding this split to the model
- ``'internal_value'`` : raw predicted value that would be produced by this node if it was a leaf node
- ``'internal_count'`` : number of records from the training data that fall into this non-leaf node
- ``'internal_weight'`` : total weight of all nodes that fall into this non-leaf node
- ``'leaf_count'`` : number of records from the training data that fall into this leaf node
- ``'leaf_weight'`` : total weight (sum of Hessian) of all observations that fall into this leaf node
- ``'data_percentage'`` : percentage of training data that fall into this node
precision : int or None, optional (default=3)
Used to restrict the display of floating point values to a certain precision.
orientation : str, optional (default='horizontal')
Orientation of the tree.
Can be 'horizontal' or 'vertical'.
example_case : numpy 2-D array, pandas DataFrame or None, optional (default=None)
Single row with the same structure as the training data.
If not None, the plot will highlight the path that sample takes through the tree.
.. versionadded:: 4.0.0
max_category_values : int, optional (default=10)
The maximum number of category values to display in tree nodes, if the number of thresholds is greater than this value, thresholds will be collapsed and displayed on the label tooltip instead.
.. warning::
Consider wrapping the SVG string of the tree graph with ``IPython.display.HTML`` when running on JupyterLab to get the `tooltip <https://graphviz.org/docs/attrs/tooltip>`_ working right.
Example:
.. code-block:: python
from IPython.display import HTML
graph = lgb.create_tree_digraph(clf, max_category_values=5)
HTML(graph._repr_image_svg_xml())
.. versionadded:: 4.0.0
**kwargs
Other parameters passed to ``Digraph`` constructor.
Check https://graphviz.readthedocs.io/en/stable/api.html#digraph for the full list of supported parameters.
Returns
-------
graph : graphviz.Digraph
The digraph representation of specified tree.
"""
if isinstance(booster, LGBMModel):
booster = booster.booster_
elif not isinstance(booster, Booster):
raise TypeError('booster must be Booster or LGBMModel.')
model = booster.dump_model()
tree_infos = model['tree_info']
feature_names = model.get('feature_names', None)
monotone_constraints = model.get('monotone_constraints', None)
if tree_index < len(tree_infos):
tree_info = tree_infos[tree_index]
else:
raise IndexError('tree_index is out of range.')
if show_info is None:
show_info = []
if example_case is not None:
if not isinstance(example_case, (np.ndarray, pd_DataFrame)) or example_case.ndim != 2:
raise ValueError('example_case must be a numpy 2-D array or a pandas DataFrame')
if example_case.shape[0] != 1:
raise ValueError('example_case must have a single row.')
if isinstance(example_case, pd_DataFrame):
example_case = _data_from_pandas(
data=example_case,
feature_name="auto",
categorical_feature="auto",
pandas_categorical=booster.pandas_categorical
)[0]
example_case = example_case[0]
return _to_graphviz(
tree_info=tree_info,
show_info=show_info,
feature_names=feature_names,
precision=precision,
orientation=orientation,
constraints=monotone_constraints,
example_case=example_case,
max_category_values=max_category_values,
**kwargs
)
def plot_tree(
booster: Union[Booster, LGBMModel],
ax=None,
tree_index: int = 0,
figsize: Optional[Tuple[float, float]] = None,
dpi: Optional[int] = None,
show_info: Optional[List[str]] = None,
precision: Optional[int] = 3,
orientation: str = 'horizontal',
example_case: Optional[Union[np.ndarray, pd_DataFrame]] = None,
**kwargs: Any
) -> Any:
"""Plot specified tree.
Each node in the graph represents a node in the tree.
Non-leaf nodes have labels like ``Column_10 <= 875.9``, which means
"this node splits on the feature named "Column_10", with threshold 875.9".
Leaf nodes have labels like ``leaf 2: 0.422``, which means "this node is a
leaf node, and the predicted value for records that fall into this node
is 0.422". The number (``2``) is an internal unique identifier and doesn't
have any special meaning.
.. note::
It is preferable to use ``create_tree_digraph()`` because of its lossless quality
and returned objects can be also rendered and displayed directly inside a Jupyter notebook.
Parameters
----------
booster : Booster or LGBMModel
Booster or LGBMModel instance to be plotted.
ax : matplotlib.axes.Axes or None, optional (default=None)
Target axes instance.
If None, new figure and axes will be created.
tree_index : int, optional (default=0)
The index of a target tree to plot.
figsize : tuple of 2 elements or None, optional (default=None)
Figure size.
dpi : int or None, optional (default=None)
Resolution of the figure.
show_info : list of str, or None, optional (default=None)
What information should be shown in nodes.
- ``'split_gain'`` : gain from adding this split to the model
- ``'internal_value'`` : raw predicted value that would be produced by this node if it was a leaf node
- ``'internal_count'`` : number of records from the training data that fall into this non-leaf node
- ``'internal_weight'`` : total weight of all nodes that fall into this non-leaf node
- ``'leaf_count'`` : number of records from the training data that fall into this leaf node
- ``'leaf_weight'`` : total weight (sum of Hessian) of all observations that fall into this leaf node
- ``'data_percentage'`` : percentage of training data that fall into this node
precision : int or None, optional (default=3)
Used to restrict the display of floating point values to a certain precision.
orientation : str, optional (default='horizontal')
Orientation of the tree.
Can be 'horizontal' or 'vertical'.
example_case : numpy 2-D array, pandas DataFrame or None, optional (default=None)
Single row with the same structure as the training data.
If not None, the plot will highlight the path that sample takes through the tree.
.. versionadded:: 4.0.0
**kwargs
Other parameters passed to ``Digraph`` constructor.
Check https://graphviz.readthedocs.io/en/stable/api.html#digraph for the full list of supported parameters.
Returns
-------
ax : matplotlib.axes.Axes
The plot with single tree.
"""
if MATPLOTLIB_INSTALLED:
import matplotlib.image as image
import matplotlib.pyplot as plt
else:
raise ImportError('You must install matplotlib and restart your session to plot tree.')
if ax is None:
if figsize is not None:
_check_not_tuple_of_2_elements(figsize, 'figsize')
_, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi)
graph = create_tree_digraph(booster=booster, tree_index=tree_index,
show_info=show_info, precision=precision,
orientation=orientation, example_case=example_case, **kwargs)
s = BytesIO()
s.write(graph.pipe(format='png'))
s.seek(0)
img = image.imread(s)
ax.imshow(img)
ax.axis('off')
return ax
|