1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
|
#!/usr/bin/env python3
import logging
from . import utils
from .model import AnalyticModel
from . import functions as df
logger = logging.getLogger(__name__)
class SDKBehaviourModel:
def __init__(self, observations, annotations):
meta_observations = list()
delta_by_name = dict()
delta_param_by_name = dict()
is_loop = dict()
for annotation in annotations:
am_tt_param_names = sorted(annotation.start.param.keys())
if annotation.name not in delta_by_name:
delta_by_name[annotation.name] = dict()
delta_param_by_name[annotation.name] = dict()
_, _, meta_obs, _is_loop = self.learn_pta(
observations,
annotation,
delta_by_name[annotation.name],
delta_param_by_name[annotation.name],
)
meta_observations += meta_obs
is_loop.update(_is_loop)
self.am_tt_param_names = am_tt_param_names
self.delta_by_name = delta_by_name
self.delta_param_by_name = delta_param_by_name
self.meta_observations = meta_observations
self.is_loop = is_loop
self.build_transition_guards()
def build_transition_guards(self):
self.transition_guard = dict()
for name in sorted(self.delta_by_name.keys()):
for t_from, t_to_set in self.delta_by_name[name].items():
i_to_transition = dict()
delta_param_sets = list()
to_names = list()
transition_guard = dict()
if len(t_to_set) > 1:
am_tt_by_name = {
name: {
"attributes": [t_from],
"param": list(),
t_from: list(),
},
}
for i, t_to in enumerate(sorted(t_to_set)):
for param in self.delta_param_by_name[name][(t_from, t_to)]:
am_tt_by_name[name]["param"].append(
utils.param_dict_to_list(
utils.param_str_to_dict(param),
self.am_tt_param_names,
)
)
am_tt_by_name[name][t_from].append(i)
i_to_transition[i] = t_to
am = AnalyticModel(
am_tt_by_name, self.am_tt_param_names, force_tree=True
)
model, info = am.get_fitted()
if type(info(name, t_from)) is df.SplitFunction:
flat_model = info(name, t_from).flatten()
else:
flat_model = list()
logger.warning(
f"Model for {name} {t_from} is {info(name, t_from)}, expected SplitFunction"
)
for prefix, output in flat_model:
transition_name = i_to_transition[int(output)]
if transition_name not in transition_guard:
transition_guard[transition_name] = list()
transition_guard[transition_name].append(prefix)
self.transition_guard[t_from] = transition_guard
def get_trace(self, name, param_dict):
delta = self.delta_by_name[name]
current_state = "__init__"
trace = [current_state]
states_seen = set()
while current_state != "__end__":
next_states = delta[current_state]
states_seen.add(current_state)
next_states = list(filter(lambda q: q not in states_seen, next_states))
if len(next_states) == 0:
raise RuntimeError(
f"get_trace({name}, {param_dict}): found infinite loop at {trace}"
)
if len(next_states) > 1 and self.transition_guard[current_state]:
matching_next_states = list()
for candidate in next_states:
for condition in self.transition_guard[current_state][candidate]:
valid = True
for key, value in condition:
if param_dict[key] != value:
valid = False
break
if valid:
matching_next_states.append(candidate)
break
next_states = matching_next_states
if len(next_states) == 0:
raise RuntimeError(
f"get_trace({name}, {param_dict}): found no valid outbound transitions at {trace}, candidates {self.transition_guard[current_state]}"
)
if len(next_states) > 1:
raise RuntimeError(
f"get_trace({name}, {param_dict}): found non-deterministic outbound transitions {next_states} at {trace}"
)
(next_state,) = next_states
trace.append(next_state)
current_state = next_state
return trace
def learn_pta(self, observations, annotation, delta=dict(), delta_param=dict()):
prev_i = annotation.start.offset
prev = "__init__"
prev_non_kernel = prev
meta_observations = list()
n_seen = dict()
total_latency_us = 0
if annotation.kernels:
# ggf. als dict of tuples, für den Fall dass Schleifen verschieden iterieren können?
for i in range(prev_i, annotation.kernels[0].offset):
this = observations[i]["name"] + " @ " + observations[i]["place"]
if this in n_seen:
if n_seen[this] == 1:
logger.debug(
f"Loop found in {annotation.start.name} {annotation.end.param}: {this} ⟳"
)
n_seen[this] += 1
else:
n_seen[this] = 1
if not prev in delta:
delta[prev] = set()
delta[prev].add(this)
# annotation.start.param may be incomplete, for instance in cases
# where DPUs are allocated before the input file is loadeed (and
# thus before the problem size is known).
# Hence, we must use annotation.end.param whenever we deal
# with possibly problem size-dependent behaviour.
if not (prev, this) in delta_param:
delta_param[(prev, this)] = set()
delta_param[(prev, this)].add(
utils.param_dict_to_str(annotation.end.param)
)
prev = this
prev_i = i + 1
total_latency_us += observations[i]["attribute"].get("latency_us", 0)
meta_observations.append(
{
"name": f"__trace__ {this}",
"param": annotation.end.param,
"attribute": dict(
filter(
lambda kv: not kv[0].startswith("e_"),
observations[i]["param"].items(),
)
),
}
)
prev_non_kernel = prev
for kernel in annotation.kernels:
prev = prev_non_kernel
for i in range(prev_i, kernel.offset):
this = observations[i]["name"] + " @ " + observations[i]["place"]
if not prev in delta:
delta[prev] = set()
delta[prev].add(this)
if not (prev, this) in delta_param:
delta_param[(prev, this)] = set()
delta_param[(prev, this)].add(
utils.param_dict_to_str(annotation.end.param)
)
# The last iteration (next block) contains a single kernel,
# so we do not increase total_latency_us here.
# However, this means that we will only ever get one latency
# value for each set of kernels with a common problem size,
# despite potentially having far more data at our fingertips.
# We could provide one total_latency_us for each kernel
# (by combining start latency + kernel latency + teardown latency),
# but for that we first need to distinguish between kernel
# components and teardown components in the following block.
prev = this
prev_i = i + 1
meta_observations.append(
{
"name": f"__trace__ {this}",
"param": annotation.end.param,
"attribute": dict(
filter(
lambda kv: not kv[0].startswith("e_"),
observations[i]["param"].items(),
)
),
}
)
# There is no kernel end signal in the underlying data, so the last iteration also contains a kernel run.
prev = prev_non_kernel
for i in range(prev_i, annotation.end.offset):
this = observations[i]["name"] + " @ " + observations[i]["place"]
if this in n_seen:
if n_seen[this] == 1:
logger.debug(
f"Loop found in {annotation.start.name} {annotation.end.param}: {this} ⟳"
)
n_seen[this] += 1
else:
n_seen[this] = 1
if not prev in delta:
delta[prev] = set()
delta[prev].add(this)
if not (prev, this) in delta_param:
delta_param[(prev, this)] = set()
delta_param[(prev, this)].add(utils.param_dict_to_str(annotation.end.param))
total_latency_us += observations[i]["attribute"].get("latency_us", 0)
prev = this
meta_observations.append(
{
"name": f"__trace__ {this}",
"param": annotation.end.param,
"attribute": dict(
filter(
lambda kv: not kv[0].startswith("e_"),
observations[i]["param"].items(),
)
),
}
)
if not prev in delta:
delta[prev] = set()
delta[prev].add("__end__")
if not (prev, "__end__") in delta_param:
delta_param[(prev, "__end__")] = set()
delta_param[(prev, "__end__")].add(
utils.param_dict_to_str(annotation.end.param)
)
for transition, count in n_seen.items():
meta_observations.append(
{
"name": f"__loop__ {transition}",
"param": annotation.end.param,
"attribute": {"n_iterations": count},
}
)
if total_latency_us:
meta_observations.append(
{
"name": annotation.start.name,
"param": annotation.end.param,
"attribute": {"latency_us": total_latency_us},
}
)
is_loop = dict(
map(lambda kv: (kv[0], True), filter(lambda kv: kv[1] > 1, n_seen.items()))
)
return delta, delta_param, meta_observations, is_loop
class EventSequenceModel:
def __init__(self, models):
self.models = models
def _event_normalizer(self, event):
event_normalizer = lambda p: p
if "/" in event:
v1, v2 = event.split("/")
if utils.is_numeric(v1):
event = v2.strip()
event_normalizer = lambda p: utils.soft_cast_float(v1) / p
elif utils.is_numeric(v2):
event = v1.strip()
event_normalizer = lambda p: p / utils.soft_cast_float(v2)
else:
raise RuntimeError(f"Cannot parse '{event}'")
return event, event_normalizer
def eval_strs(self, events, aggregate="sum", aggregate_init=0, use_lut=False):
for event in events:
event, event_normalizer = self._event_normalizer(event)
nn, param = event.split("(")
name, action = nn.split(".")
param_model = None
ref_model = None
for model in self.models:
if name in model.names and action in model.attributes(name):
ref_model = model
if use_lut:
param_model = model.get_param_lut(allow_none=True)
else:
param_model, param_info = model.get_fitted()
break
if param_model is None:
raise RuntimeError(f"Did not find a model for {name}.{action}")
param = param.removesuffix(")")
if param == "":
param = dict()
else:
param = utils.parse_conf_str(param)
param_list = utils.param_dict_to_list(param, ref_model.parameters)
if not use_lut and not param_info(name, action).is_predictable(param_list):
logger.warning(
f"Cannot predict {name}.{action}({param}), falling back to static model"
)
try:
event_output = event_normalizer(
param_model(
name,
action,
param=param_list,
)
)
except KeyError:
if use_lut:
logger.error(
f"Cannot predict {name}.{action}({param}) from LUT model"
)
else:
logger.error(f"Cannot predict {name}.{action}({param}) from model")
raise
except TypeError:
if not use_lut:
logger.error(f"Cannot predict {name}.{action}({param}) from model")
raise
if aggregate == "sum":
aggregate_init += event_output
else:
raise RuntimeError(f"Unknown aggregate type: {aggregate}")
return aggregate_init
|