1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
|
#!/usr/bin/env python3
import dfatool.functions as df
import dfatool.plotter
import logging
import numpy as np
import os
import sys
logger = logging.getLogger(__name__)
def sanity_check(args):
pass
def print_static(model, static_model, name, attribute, with_dependence=False):
unit = " "
if attribute == "power":
unit = "µW"
elif attribute == "duration":
unit = "µs"
elif attribute == "substate_count":
unit = "su"
if model.attr_by_name[name][attribute].stats:
print(
"{:10s}: {:28s} : {:.2f} {:s} ({:.2f})".format(
name,
attribute,
static_model(name, attribute),
unit,
model.attr_by_name[name][
attribute
].stats.generic_param_dependence_ratio(),
)
)
else:
print(
"{:10s}: {:28s} : {:.2f} {:s}".format(
name,
attribute,
static_model(name, attribute),
unit,
)
)
if with_dependence:
for param in model.parameters:
print(
"{:10s} {:13s} {:15s}: {:.2f}".format(
"",
"dependence on",
param,
model.attr_by_name[name][attribute].stats.param_dependence_ratio(
param
),
)
)
def print_info_by_name(model, by_name):
for name in model.names:
attr = list(model.attributes(name))[0]
print(f"{name}:")
print(f""" Number of Measurements: {len(by_name[name][attr])}""")
for param in model.parameters:
print(
" Parameter {} ∈ {}".format(
param,
model.attr_by_name[name][attr].stats.distinct_values_by_param_name[
param
],
)
)
if name in model._num_args:
for i in range(model._num_args[name]):
print(
" Argument {} ∈ {}".format(
i,
model.attr_by_name[name][
attr
].stats.distinct_values_by_param_index[
len(model.parameters) + i
],
)
)
for attr in sorted(model.attributes(name)):
print(
" Observation {} ∈ [{:.2f}, {:.2f}]".format(
attr,
model.attr_by_name[name][attr].min(),
model.attr_by_name[name][attr].max(),
)
)
def print_analyticinfo(prefix, info):
model_function = info.model_function.removeprefix("0 + ")
for i in range(len(info.model_args)):
model_function = model_function.replace(
f"regression_arg({i})", str(info.model_args[i])
)
model_function = model_function.replace("+ -", "- ")
print(f"{prefix}: {model_function}")
def print_staticinfo(prefix, info):
print(f"{prefix}: {info.value}")
def print_symreginfo(prefix, info):
print(f"{prefix}: {str(info.regressor)}")
def print_cartinfo(prefix, info):
_print_cartinfo(prefix, info.to_json())
def print_xgbinfo(prefix, info):
for i, tree in enumerate(info.to_json()):
_print_cartinfo(prefix + f"tree{i:03d} :", tree)
def print_lmtinfo(prefix, info):
_print_lmtinfo(prefix, info.to_json())
def _print_lmtinfo(prefix, model):
if model["type"] == "static":
print(f"""{prefix}: {model["value"]}""")
elif model["type"] == "scalarSplit":
_print_lmtinfo(
f"""{prefix} {model["paramName"]}≤{model["threshold"]} """,
model["left"],
)
_print_lmtinfo(
f"""{prefix} {model["paramName"]}>{model["threshold"]} """,
model["right"],
)
else:
model_function = model["functionStr"].removeprefix("0 + ")
for i, coef in enumerate(model["regressionModel"]):
model_function = model_function.replace(f"regression_arg({i})", str(coef))
model_function = model_function.replace("+ -", "- ")
print(f"{prefix}: {model_function}")
def _print_cartinfo(prefix, model):
if model["type"] == "static":
print(f"""{prefix}: {model["value"]}""")
else:
_print_cartinfo(
f"""{prefix} {model["paramName"]}≤{model["threshold"]} """,
model["left"],
)
_print_cartinfo(
f"""{prefix} {model["paramName"]}>{model["threshold"]} """,
model["right"],
)
def print_splitinfo(info, prefix=""):
if type(info) is df.SplitFunction:
for k, v in info.child.items():
print_splitinfo(v, f"{prefix} {info.param_name}={k}")
elif type(info) is df.ScalarSplitFunction:
print_splitinfo(info.child_le, f"{prefix} {info.param_name}≤{info.threshold}")
print_splitinfo(info.child_gt, f"{prefix} {info.param_name}>{info.threshold}")
elif type(info) is df.AnalyticFunction:
print_analyticinfo(prefix, info)
elif type(info) is df.SymbolicRegressionFunction:
print_symreginfo(prefix, info)
elif type(info) is df.StaticFunction:
print(f"{prefix}: {info.value}")
else:
print(f"{prefix}: UNKNOWN {type(info)}")
def print_model(prefix, info):
if type(info) is df.StaticFunction:
print_staticinfo(prefix, info)
elif type(info) is df.AnalyticFunction:
print_analyticinfo(prefix, info)
elif type(info) is df.FOLFunction:
print_analyticinfo(prefix, info)
elif type(info) is df.CARTFunction:
print_cartinfo(prefix, info)
elif type(info) is df.SplitFunction:
print_splitinfo(info, prefix)
elif type(info) is df.ScalarSplitFunction:
print_splitinfo(info, prefix)
elif type(info) is df.LMTFunction:
print_lmtinfo(prefix, info)
elif type(info) is df.LightGBMFunction:
print_xgbinfo(prefix, info)
elif type(info) is df.XGBoostFunction:
print_xgbinfo(prefix, info)
elif type(info) is df.SymbolicRegressionFunction:
print_symreginfo(prefix, info)
else:
print(f"{prefix}: {type(info)} UNIMPLEMENTED")
def print_model_complexity(model):
key_len = len("Key")
attr_len = len("Attribute")
for name in model.names:
if len(name) > key_len:
key_len = len(name)
for attr in model.attributes(name):
if len(attr) > attr_len:
attr_len = len(attr)
for name in sorted(model.names):
for attribute in sorted(model.attributes(name)):
mf = model.attr_by_name[name][attribute].model_function
prefix = f"{name:{key_len}s} {attribute:{attr_len}s}: {mf.get_complexity_score():7d}"
try:
num_nodes = mf.get_number_of_nodes()
max_depth = mf.get_max_depth()
print(f"{prefix} ({num_nodes:6d} nodes @ {max_depth:3d} max depth)")
except AttributeError:
print(prefix)
def format_quality_measures(result, error_metric="smape", col_len=8):
if error_metric in result and result[error_metric] is not np.nan:
if error_metric.endswith("pe"):
unit = "%"
else:
unit = " "
return f"{result[error_metric]:{col_len-1}.2f}{unit}"
else:
return f"""{result["mae"]:{col_len-1}.0f} """
def model_quality_table(
lut,
model,
static,
model_info,
xv_method=None,
xv_count=None,
error_metric="smape",
load_model=False,
):
key_len = len("Key")
attr_len = len("Attribute")
for key in static.keys():
if len(key) > key_len:
key_len = len(key)
for attr in static[key].keys():
if len(attr) > attr_len:
attr_len = len(attr)
if xv_method == "kfold":
xv_header = "kfold XV"
elif xv_method == "montecarlo":
xv_header = "MC XV"
elif xv_method:
xv_header = "XV"
elif load_model:
xv_header = "json"
else:
xv_header = "training"
if xv_method is not None:
print(
f"Model error ({error_metric}) after cross validation ({xv_method}, {xv_count}):"
)
else:
print(f"Model error ({error_metric}) on training data:")
print(
f"""{"":>{key_len}s} {"":>{attr_len}s} {"training":>8s} {xv_header:>8s} {xv_header:>8s}"""
)
print(
f"""{"Key":>{key_len}s} {"Attribute":>{attr_len}s} {"LUT":>8s} {"model":>8s} {"static":>8s}"""
)
for key in sorted(static.keys()):
for attr in sorted(static[key].keys()):
buf = f"{key:>{key_len}s} {attr:>{attr_len}s}"
for results, info in ((lut, None), (model, model_info), (static, None)):
buf += " "
if results is not None and (
info is None
or (
attr != "energy_Pt"
and type(info(key, attr)) is not df.StaticFunction
)
or (
attr == "energy_Pt"
and (
type(info(key, "power")) is not df.StaticFunction
or type(info(key, "duration")) is not df.StaticFunction
)
)
):
result = results[key][attr]
buf += format_quality_measures(result, error_metric=error_metric)
else:
buf += f"""{"----":>7s} """
if type(model_info(key, attr)) is not df.StaticFunction:
if model[key][attr]["mae"] > static[key][attr]["mae"]:
buf += " :-("
elif (
lut is not None
and model[key][attr]["mae"] <= 2 * lut[key][attr]["mae"]
and static[key][attr]["mae"] > 4 * lut[key][attr]["mae"]
):
buf += " :-D"
elif (
lut is not None
and static[key][attr]["mae"] - model[key][attr]["mae"]
> model[key][attr]["mae"] - lut[key][attr]["mae"]
and static[key][attr]["mae"] > 1.1 * lut[key][attr]["mae"]
):
buf += " :-)"
print(buf)
def export_dataref(dref_file, dref, precision=None):
with open(dref_file, "w") as f:
for k, v in sorted(os.environ.items(), key=lambda kv: kv[0]):
if k.startswith("DFATOOL_"):
print(f"% {k}='{v}'", file=f)
for arg in sys.argv:
print(f"% {arg}", file=f)
for k, v in sorted(dref.items()):
if type(v) is not tuple:
v = (v, None)
if v[1] is None:
prefix = r"\drefset{"
else:
prefix = r"\drefset" + f"[unit={v[1]}]" + "{"
if type(v[0]) in (float, np.float64) and precision is not None:
print(f"{prefix}/{k}" + "}{" + f"{v[0]:.{precision}f}" + "}", file=f)
else:
print(f"{prefix}/{k}" + "}{" + str(v[0]) + "}", file=f)
def export_dot(model, dot_prefix):
for name in model.names:
for attribute in model.attributes(name):
dot_model = model.attr_by_name[name][attribute].to_dot()
if dot_model is None:
logger.debug(f"{name} {attribute} does not have a dot model")
elif type(dot_model) is list:
# A Forest
for i, tree in enumerate(dot_model):
filename = f"{dot_prefix}{name}-{attribute}.{i:03d}.dot"
with open(filename, "w") as f:
print(tree, file=f)
filename = filename.replace(f".{len(dot_model)-1:03d}.", ".*.")
logger.info(f"Dot exports of model saved to {filename}")
else:
filename = f"{dot_prefix}{name}-{attribute}.dot"
with open(filename, "w") as f:
print(dot_model, file=f)
logger.info(f"Dot export of model saved to {filename}")
def export_csv_unparam(model, csv_prefix, dialect="excel"):
import csv
for name in sorted(model.names):
filename = f"{csv_prefix}{name}.csv"
with open(filename, "w") as f:
writer = csv.writer(f, dialect=dialect)
writer.writerow(
["measurement"] + model.parameters + sorted(model.attributes(name))
)
for i, param_tuple in enumerate(model.param_values(name)):
row = [i] + param_tuple
for attr in sorted(model.attributes(name)):
row.append(model.attr_by_name[name][attr].data[i])
writer.writerow(row)
logger.info(f"CSV unparam data saved to {filename}")
def export_pgf_unparam(model, pgf_prefix):
for name in model.names:
for attribute in model.attributes(name):
filename = f"{pgf_prefix}{name}-{attribute}.txt"
with open(filename, "w") as f:
print(
"measurement value "
+ " ".join(model.parameters)
+ " "
+ " ".join(
map(lambda x: f"arg{x}", range(model._num_args.get(name, 0)))
),
file=f,
)
for i, value in enumerate(model.attr_by_name[name][attribute].data):
parameters = list()
for param in model.attr_by_name[name][attribute].param_values[i]:
if param is None:
parameters.append("{}")
else:
parameters.append(str(param))
parameters = " ".join(parameters)
print(f"{i} {value} {parameters}", file=f)
logger.info(f"PGF unparam data saved to {filename}")
def export_json_unparam(model, filename):
import json
from dfatool.utils import NpEncoder
ret = {"paramNames": model.parameters, "byName": dict()}
for name in model.names:
ret["byName"][name] = dict()
for attribute in model.attributes(name):
ret["byName"][name][attribute] = {
"paramValues": model.attr_by_name[name][attribute].param_values,
"data": model.attr_by_name[name][attribute].data,
}
with open(filename, "w") as f:
json.dump(ret, f, cls=NpEncoder)
logger.info(f"JSON unparam data saved to {filename}")
def boxplot_param(args, model):
title = None
param_is_filtered = dict()
if args.filter_param:
title = "filter: " + " && ".join(
map(lambda kv: f"{kv[0]} {kv[1]} {kv[2]}", args.filter_param)
)
for param_name, _, _ in args.filter_param:
param_is_filtered[param_name] = True
by_param = model.get_by_param()
for name in model.names:
attr_names = sorted(model.attributes(name))
param_keys = list(
map(lambda kv: kv[1], filter(lambda kv: kv[0] == name, by_param.keys()))
)
param_desc = list(
map(
lambda param_key: ", ".join(
map(
lambda ip: f"{model.param_name(ip[0])}={ip[1]}",
filter(
lambda ip: model.param_name(ip[0]) not in param_is_filtered,
enumerate(param_key),
),
)
),
param_keys,
)
)
for attribute in attr_names:
dfatool.plotter.boxplot(
param_desc,
list(map(lambda k: by_param[(name, k)][attribute], param_keys)),
output=f"{args.boxplot_param}{name}-{attribute}.pdf",
title=title,
ylabel=attribute,
show=not args.non_interactive,
)
def add_standard_arguments(parser):
parser.add_argument(
"--export-dot",
metavar="PREFIX",
type=str,
help="Export tree-based model to {PREFIX}{name}-{attribute}.dot",
)
parser.add_argument(
"--export-dref",
metavar="FILE",
type=str,
help="Export model and model quality to LaTeX dataref file",
)
parser.add_argument(
"--export-csv-unparam",
metavar="PREFIX",
type=str,
help="Export raw (parameter-independent) observations in CSV format to {PREFIX}{name}-{attribute}.csv",
)
parser.add_argument(
"--export-csv-dialect",
metavar="DIALECT",
type=str,
choices=["excel", "excel-tab", "unix"],
default="excel",
help="CSV dialect to use for --export-csv-unparam",
)
parser.add_argument(
"--export-pgf-unparam",
metavar="PREFIX",
type=str,
help="Export raw (parameter-independent) observations in tikz-pgf-compatible format to {PREFIX}{name}-{attribute}.txt",
)
parser.add_argument(
"--export-json-unparam",
metavar="FILENAME",
type=str,
help="Export raw (parameter-independent) observations in JSON format to FILENAME",
)
parser.add_argument(
"--export-json",
metavar="FILENAME",
type=str,
help="Export model in JSON format to FILENAME",
)
parser.add_argument(
"--load-json",
metavar="FILENAME",
type=str,
help="Load model in JSON format from FILENAME",
)
parser.add_argument(
"--dref-precision",
metavar="NDIG",
type=int,
help="Limit precision of dataref export to NDIG decimals",
)
parser.add_argument(
"--plot-unparam",
metavar="<name>:<attribute>:<Y axis label>[;<name>:<attribute>:<label>;...]",
type=str,
help="Plot all mesurements for <name> <attribute> without regard for parameter values. "
"X axis is measurement number/id.",
)
parser.add_argument(
"--plot-param",
metavar="<name>:<attribute>:<parameter>[;<name>:<attribute>:<parameter>;...])",
type=str,
help="Plot measurements for <name> <attribute> by <parameter>. "
"X axis is parameter value. "
"Plots the model function as one solid line for each combination of non-<parameter> parameters. "
"Also plots the corresponding measurements. ",
)
parser.add_argument(
"--boxplot-unparam",
metavar="PREFIX",
type=str,
help="Export boxplots of raw (parameter-independent) observations to {PREFIX}{name}-{attribute}.pdf",
)
parser.add_argument(
"--boxplot-param",
metavar="PREFIX",
type=str,
help="Export boxplots of observations to {PREFIX}{name}-{attribute}.pdf, with one boxplot per parameter combination",
)
parser.add_argument(
"--non-interactive", action="store_true", help="Do not show interactive plots"
)
parser.add_argument(
"--export-xv",
metavar="FILE",
type=str,
help="Export raw cross-validation results to FILE for later analysis (e.g. to compare different modeling approaches by means of a t-test)",
)
parser.add_argument(
"--export-raw-predictions",
metavar="FILE",
type=str,
help="Export raw model error data (i.e., ground truth vs. model output) to FILE for later analysis (e.g. to compare different modeling approaches by means of a t-test)",
)
parser.add_argument(
"--info",
action="store_true",
help="Show benchmark information (number of measurements, parameter values, ...)",
)
parser.add_argument(
"--log-level",
metavar="LEVEL",
choices=["debug", "info", "warning", "error"],
default="warning",
help="Set log level",
)
parser.add_argument(
"--show-model",
choices=["static", "paramdetection", "param", "all"],
action="append",
default=list(),
help="static: show static model values as well as parameter detection heuristic.\n"
"paramdetection: show stddev of static/lut/fitted model\n"
"param: show parameterized model functions and regression variable values\n"
"all: all of the above",
)
parser.add_argument(
"--show-model-error",
action="store_true",
help="Show model error compared to LUT (lower bound) and static (reference) models",
)
parser.add_argument(
"--show-model-complexity",
action="store_true",
help="Show model complexity score and details (e.g. regression tree height and node count)",
)
parser.add_argument(
"--cross-validate",
metavar="<method>:<count>",
type=str,
help="Perform cross validation when computing model quality",
)
parser.add_argument(
"--parameter-aware-cross-validation",
action="store_true",
help="Perform parameter-aware cross-validation: ensure that parameter values (and not just observations) are mutually exclusive between training and validation sets.",
)
parser.add_argument(
"--param-shift",
metavar="<key>=<+|-|*|/><value>|none-to-0|categorical;...",
type=str,
help="Adjust parameter values before passing them to model generation",
)
parser.add_argument(
"--normalize-nfp",
metavar="<newkey>=<oldkey>=<+|-|*|/><value>|none-to-0;...",
type=str,
help="Normalize observation values before passing them to model generation",
)
parser.add_argument(
"--filter-param",
metavar="<parameter name><condition>[;<parameter name><condition>...]",
type=str,
help="Only consider measurements where <parameter name> satisfies <condition>. "
"<condition> may be <operator><parameter value> with operator being < / <= / = / >= / >, "
"or ∈<parameter value>[,<parameter value>...]. "
"All other measurements (including those where it is None, that is, has not been set yet) are discarded. "
"Note that this may remove entire function calls from the model.",
)
parser.add_argument(
"--filter-observation",
metavar="<key>:<attribute>[,<key>:<attribute>...]",
type=str,
help="Only consider measurements of <key> <attribute>",
)
parser.add_argument(
"--ignore-param",
metavar="<parameter name>[,<parameter name>,...]",
type=str,
help="Ignore listed parameters during model generation",
)
parser.add_argument(
"--function-override",
metavar="<name>:<attribute>:<function>[;<name>:<attribute>:<function>;...]",
type=str,
help="Manually specify the function to fit for <name> <attribute>. "
"A function specified this way bypasses parameter detection: "
"It is always assigned, even if the model seems to be independent of the parameters it references.",
)
parser.add_argument(
"--error-metric",
metavar="METRIC",
choices=[
"mae",
"mape",
"smape",
"p50",
"p90",
"p95",
"p99",
"msd",
"rmsd",
"ssr",
"rsq",
],
default="smape",
help="Error metric to use in --show-quality reports. In case a metric is undefined for a particular set of ground truth and prediction entries, dfatool falls back to mae.\n"
"MAE : Mean Absolute Error\n"
"MAPE : Mean Absolute Percentage Error\n"
"SMAPE : Symmetric Mean Absolute Percentage Error\n"
"p50 : Median (50th Percentile) Absolute Error\n"
"p90 : 90th Percentile Absolute Error\n"
"p95 : 95th Percentile Absolute Error\n"
"p99 : 99th Percentile Absolute Error\n"
"msd : Mean Square Deviation\n"
"rmsd : Root Mean Square Deviation\n"
"ssr : Sum of Squared Residuals\n"
"rsq : R² Score",
)
parser.add_argument(
"--skip-param-stats",
action="store_true",
help="Do not compute param stats that are required for RMT. Use this for high-dimensional feature spaces.",
)
parser.add_argument(
"--force-tree",
action="store_true",
help="Build regression tree without checking whether static/analytic functions are sufficient.",
)
parser.add_argument(
"--progress",
action="store_true",
help="Show progress bars while executing compute-intensive tasks such as cross-validation.",
)
def parse_filter_string(filter_string, parameter_names=None):
if "<=" in filter_string:
p, v = filter_string.split("<=")
return (p, "≤", v)
if ">=" in filter_string:
p, v = filter_string.split(">=")
return (p, "≥", v)
if "!=" in filter_string:
p, v = filter_string.split("!=")
if parameter_names is None or p in parameter_names:
return (p, "≠", v)
# otherwise, '!' belongs to the parameter name and is not part of the condition.
for op in ("<", ">", "≤", "≥", "=", "∈", "≠"):
if op in filter_string:
p, v = filter_string.split(op)
return (p, op, v)
raise ValueError(f"Cannot parse '{filter_string}'")
def parse_shift_function(param_name, param_shift):
if param_shift.startswith("+"):
param_shift_value = float(param_shift[1:])
return lambda p: p + param_shift_value
elif param_shift.startswith("-"):
param_shift_value = float(param_shift[1:])
return lambda p: p - param_shift_value
elif param_shift.startswith("*"):
param_shift_value = float(param_shift[1:])
return lambda p: p * param_shift_value
elif param_shift.startswith("/"):
param_shift_value = float(param_shift[1:])
return lambda p: p / param_shift_value
elif param_shift == "categorical":
return lambda p: "=" + str(p)
elif param_shift == "none-to-0":
return lambda p: p or 0
else:
raise ValueError(f"Unsupported shift operation {param_name}={param_shift}")
def parse_nfp_normalization(raw_normalization):
norm_list = list()
for norm_pair in raw_normalization.split(";"):
new_name, old_name, norm_val = norm_pair.split("=")
norm_function = parse_shift_function(new_name, norm_val)
norm_list.append((new_name, old_name, norm_function))
return norm_list
def parse_param_shift(raw_param_shift):
shift_list = list()
for shift_pair in raw_param_shift.split(";"):
param_name, param_shift = shift_pair.split("=")
param_shift_function = parse_shift_function(param_name, param_shift)
shift_list.append((param_name, param_shift_function))
return shift_list
|