summaryrefslogtreecommitdiff
path: root/lib/dfatool.py
blob: 47ce24ef6caec65f1d16affa774a3bb0574ab8d8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
#!/usr/bin/env python3

import csv
import io
import json
import logging
import numpy as np
import os
import re
import struct
import tarfile
import hashlib
from multiprocessing import Pool
from .utils import running_mean, soft_cast_int

logger = logging.getLogger(__name__)

try:
    from .pubcode import Code128
    import zbar

    zbar_available = True
except ImportError:
    zbar_available = False


arg_support_enabled = True


def mean_or_none(arr):
    """
    Compute mean of NumPy array `arr`, return -1 if empty.

    :param arr: 1-Dimensional NumPy array
    """
    if len(arr):
        return np.mean(arr)
    return -1


class KeysightCSV:
    """Simple loader for Keysight CSV data, as exported by the windows software."""

    def __init__(self):
        """Create a new KeysightCSV object."""
        pass

    def load_data(self, filename: str):
        """
        Load log data from filename, return timestamps and currents.

        Returns two one-dimensional NumPy arrays: timestamps and corresponding currents.
        """
        with open(filename) as f:
            for i, _ in enumerate(f):
                pass
            timestamps = np.ndarray((i - 3), dtype=float)
            currents = np.ndarray((i - 3), dtype=float)
        # basically seek back to start
        with open(filename) as f:
            for _ in range(4):
                next(f)
            reader = csv.reader(f, delimiter=",")
            for i, row in enumerate(reader):
                timestamps[i] = float(row[0])
                currents[i] = float(row[2]) * -1
        return timestamps, currents


def _preprocess_mimosa(measurement):
    setup = measurement["setup"]
    mim = MIMOSA(
        float(setup["mimosa_voltage"]),
        int(setup["mimosa_shunt"]),
        with_traces=measurement["with_traces"],
    )
    try:
        charges, triggers = mim.load_data(measurement["content"])
        trigidx = mim.trigger_edges(triggers)
    except EOFError as e:
        mim.errors.append("MIMOSA logfile error: {}".format(e))
        trigidx = list()

    if len(trigidx) == 0:
        mim.errors.append("MIMOSA log has no triggers")
        return {
            "fileno": measurement["fileno"],
            "info": measurement["info"],
            "has_datasource_error": len(mim.errors) > 0,
            "datasource_errors": mim.errors,
            "expected_trace": measurement["expected_trace"],
            "repeat_id": measurement["repeat_id"],
        }

    cal_edges = mim.calibration_edges(
        running_mean(mim.currents_nocal(charges[0 : trigidx[0]]), 10)
    )
    calfunc, caldata = mim.calibration_function(charges, cal_edges)
    vcalfunc = np.vectorize(calfunc, otypes=[np.float64])

    processed_data = {
        "fileno": measurement["fileno"],
        "info": measurement["info"],
        "triggers": len(trigidx),
        "first_trig": trigidx[0] * 10,
        "calibration": caldata,
        "energy_trace": mim.analyze_states(charges, trigidx, vcalfunc),
        "has_datasource_error": len(mim.errors) > 0,
        "datasource_errors": mim.errors,
    }

    for key in ["expected_trace", "repeat_id"]:
        if key in measurement:
            processed_data[key] = measurement[key]

    return processed_data


def _preprocess_etlog(measurement):
    setup = measurement["setup"]
    etlog = EnergyTraceLog(
        float(setup["voltage"]),
        int(setup["state_duration"]),
        measurement["transition_names"],
        with_traces=measurement["with_traces"],
    )
    try:
        etlog.load_data(measurement["content"])
        states_and_transitions = etlog.analyze_states(
            measurement["expected_trace"], measurement["repeat_id"]
        )
    except EOFError as e:
        etlog.errors.append("EnergyTrace logfile error: {}".format(e))

    processed_data = {
        "fileno": measurement["fileno"],
        "repeat_id": measurement["repeat_id"],
        "info": measurement["info"],
        "expected_trace": measurement["expected_trace"],
        "energy_trace": states_and_transitions,
        "has_datasource_error": len(etlog.errors) > 0,
        "datasource_errors": etlog.errors,
    }

    return processed_data


class TimingData:
    """
    Loader for timing model traces measured with on-board timers using `harness.OnboardTimerHarness`.

    Excpets a specific trace format and UART log output (as produced by
    generate-dfa-benchmark.py). Prunes states from output. (TODO)
    """

    def __init__(self, filenames):
        """
        Create a new TimingData object.

        Each filenames element corresponds to a measurement run.
        """
        self.filenames = filenames.copy()
        self.traces_by_fileno = []
        self.setup_by_fileno = []
        self.preprocessed = False
        self._parameter_names = None
        self.version = 0

    def _concatenate_analyzed_traces(self):
        self.traces = []
        for trace_group in self.traces_by_fileno:
            for trace in trace_group:
                # TimingHarness logs states, but does not aggregate any data for them at the moment -> throw all states away
                transitions = list(
                    filter(lambda x: x["isa"] == "transition", trace["trace"])
                )
                self.traces.append({"id": trace["id"], "trace": transitions})
        for i, trace in enumerate(self.traces):
            trace["orig_id"] = trace["id"]
            trace["id"] = i
            for log_entry in trace["trace"]:
                paramkeys = sorted(log_entry["parameter"].keys())
                if "param" not in log_entry["offline_aggregates"]:
                    log_entry["offline_aggregates"]["param"] = list()
                if "duration" in log_entry["offline_aggregates"]:
                    for i in range(len(log_entry["offline_aggregates"]["duration"])):
                        paramvalues = list()
                        for paramkey in paramkeys:
                            if type(log_entry["parameter"][paramkey]) is list:
                                paramvalues.append(
                                    soft_cast_int(log_entry["parameter"][paramkey][i])
                                )
                            else:
                                paramvalues.append(
                                    soft_cast_int(log_entry["parameter"][paramkey])
                                )
                        if arg_support_enabled and "args" in log_entry:
                            paramvalues.extend(map(soft_cast_int, log_entry["args"]))
                        log_entry["offline_aggregates"]["param"].append(paramvalues)

    def _preprocess_0(self):
        for filename in self.filenames:
            with open(filename, "r") as f:
                log_data = json.load(f)
                self.traces_by_fileno.extend(log_data["traces"])
        self._concatenate_analyzed_traces()

    def get_preprocessed_data(self):
        """
        Return a list of DFA traces annotated with timing and parameter data.

        Suitable for the PTAModel constructor.
        See PTAModel(...) docstring for format details.
        """
        if self.preprocessed:
            return self.traces
        if self.version == 0:
            self._preprocess_0()
        self.preprocessed = True
        return self.traces


def sanity_check_aggregate(aggregate):
    for key in aggregate:
        if "param" not in aggregate[key]:
            raise RuntimeError("aggregate[{}][param] does not exist".format(key))
        if "attributes" not in aggregate[key]:
            raise RuntimeError("aggregate[{}][attributes] does not exist".format(key))
        for attribute in aggregate[key]["attributes"]:
            if attribute not in aggregate[key]:
                raise RuntimeError(
                    "aggregate[{}][{}] does not exist, even though it is contained in aggregate[{}][attributes]".format(
                        key, attribute, key
                    )
                )
            param_len = len(aggregate[key]["param"])
            attr_len = len(aggregate[key][attribute])
            if param_len != attr_len:
                raise RuntimeError(
                    "parameter mismatch: len(aggregate[{}][param]) == {} != len(aggregate[{}][{}]) == {}".format(
                        key, param_len, key, attribute, attr_len
                    )
                )


class RawData:
    """
    Loader for hardware model traces measured with MIMOSA.

    Expects a specific trace format and UART log output (as produced by the
    dfatool benchmark generator). Loads data, prunes bogus measurements, and
    provides preprocessed data suitable for PTAModel. Results are cached on the
    file system, making subsequent loads near-instant.
    """

    def __init__(self, filenames, with_traces=False):
        """
        Create a new RawData object.

        Each filename element corresponds to a measurement run.
        It must be a tar archive with the following contents:

        Version 0:

        * `setup.json`: measurement setup. Must contain the keys `state_duration` (how long each state is active, in ms),
          `mimosa_voltage` (voltage applied to dut, in V), and `mimosa_shunt` (shunt value, in Ohm)
        * `src/apps/DriverEval/DriverLog.json`: PTA traces and parameters for this benchmark.
          Layout: List of traces, each trace has an 'id' (numeric, starting with 1) and 'trace' (list of states and transitions) element.
          Each trace has an even number of elements, starting with the first state (usually `UNINITIALIZED`) and ending with a transition.
          Each state/transition must have the members `.parameter` (parameter values, empty string or None if unknown), `.isa` ("state" or "transition") and `.name`.
          Each transition must additionally contain `.plan.level` ("user" or "epilogue").
          Example: `[ {"id": 1, "trace": [ {"parameter": {...}, "isa": "state", "name": "UNINITIALIZED"}, ...] }, ... ]
        * At least one `*.mim` file. Each file corresponds to a single execution of the entire benchmark (i.e., all runs described in DriverLog.json) and starts with a MIMOSA Autocal calibration sequence.
          MIMOSA files are parsed by the `MIMOSA` class.

        Version 1:

        * `ptalog.json`: measurement setup and traces. Contents:
          `.opt.sleep`: state duration
          `.opt.pta`: PTA
          `.opt.traces`: list of sub-benchmark traces (the benchmark may have been split due to code size limitations). Each item is a list of traces as returned by `harness.traces`:
            `.opt.traces[]`: List of traces. Each trace has an 'id' (numeric, starting with 1) and 'trace' (list of states and transitions) element.
              Each state/transition must have the members '`parameter` (dict with normalized parameter values), `.isa` ("state" or "transition") and `.name`
              Each transition must additionally contain `.args`
          `.opt.files`: list of coresponding MIMOSA measurements.
            `.opt.files[]` = ['abc123.mim', ...]
          `.opt.configs`: ....
        * MIMOSA log files (`*.mim`) as specified in `.opt.files`

        Version 2:

        * `ptalog.json`: measurement setup and traces. Contents:
          `.opt.sleep`: state duration
          `.opt.pta`: PTA
          `.opt.traces`: list of sub-benchmark traces (the benchmark may have been split due to code size limitations). Each item is a list of traces as returned by `harness.traces`:
            `.opt.traces[]`: List of traces. Each trace has an 'id' (numeric, starting with 1) and 'trace' (list of states and transitions) element.
              Each state/transition must have the members '`parameter` (dict with normalized parameter values), `.isa` ("state" or "transition") and `.name`
              Each transition must additionally contain `.args` and `.duration`
              * `.duration`: list of durations, one per repetition
          `.opt.files`: list of coresponding EnergyTrace measurements.
            `.opt.files[]` = ['abc123.etlog', ...]
          `.opt.configs`: ....
        * EnergyTrace log files (`*.etlog`) as specified in `.opt.files`

        If a cached result for a file is available, it is loaded and the file
        is not preprocessed, unless `with_traces` is set.

        tbd
        """
        self.with_traces = with_traces
        self.filenames = filenames.copy()
        self.traces_by_fileno = []
        self.setup_by_fileno = []
        self.version = 0
        self.preprocessed = False
        self._parameter_names = None
        self.ignore_clipping = False
        self.pta = None

        with tarfile.open(filenames[0]) as tf:
            for member in tf.getmembers():
                if member.name == "ptalog.json" and self.version == 0:
                    self.version = 1
                    # might also be version 2
                    # depends on whether *.etlog exists or not
                elif ".etlog" in member.name:
                    self.version = 2
                    break

        self.set_cache_file()
        if not with_traces:
            self.load_cache()

    def set_cache_file(self):
        cache_key = hashlib.sha256("!".join(self.filenames).encode()).hexdigest()
        self.cache_dir = os.path.dirname(self.filenames[0]) + "/cache"
        self.cache_file = "{}/{}.json".format(self.cache_dir, cache_key)

    def load_cache(self):
        if os.path.exists(self.cache_file):
            with open(self.cache_file, "r") as f:
                cache_data = json.load(f)
                self.filenames = cache_data["filenames"]
                self.traces = cache_data["traces"]
                self.preprocessing_stats = cache_data["preprocessing_stats"]
                if "pta" in cache_data:
                    self.pta = cache_data["pta"]
                self.setup_by_fileno = cache_data["setup_by_fileno"]
                self.preprocessed = True

    def save_cache(self):
        if self.with_traces:
            return
        try:
            os.mkdir(self.cache_dir)
        except FileExistsError:
            pass
        with open(self.cache_file, "w") as f:
            cache_data = {
                "filenames": self.filenames,
                "traces": self.traces,
                "preprocessing_stats": self.preprocessing_stats,
                "pta": self.pta,
                "setup_by_fileno": self.setup_by_fileno,
            }
            json.dump(cache_data, f)

    def _state_is_too_short(self, online, offline, state_duration, next_transition):
        # We cannot control when an interrupt causes a state to be left
        if next_transition["plan"]["level"] == "epilogue":
            return False

        # Note: state_duration is stored as ms, not us
        return offline["us"] < state_duration * 500

    def _state_is_too_long(self, online, offline, state_duration, prev_transition):
        # If the previous state was left by an interrupt, we may have some
        # waiting time left over. So it's okay if the current state is longer
        # than expected.
        if prev_transition["plan"]["level"] == "epilogue":
            return False
        # state_duration is stored as ms, not us
        return offline["us"] > state_duration * 1500

    def _measurement_is_valid_2(self, processed_data):
        """
        Check if a dfatool v2 measurement is valid.

        processed_data layout:
        'fileno' : measurement['fileno'],
        'info' : measurement['info'],
        'energy_trace' : etlog.analyze_states()
            A sequence of unnamed, unparameterized states and transitions with
            power and timing data
        'expected_trace' : trace from PTA DFS (with parameter data)
        etlog.analyze_states returns a list of (alternating) states and transitions.
        Each element is a dict containing:
            - isa: 'state' oder 'transition'
            - W_mean: Mittelwert der (kalibrierten) Leistungsaufnahme
            - W_std: Standardabweichung der (kalibrierten) Leistungsaufnahme
            - s: duration

            if isa == 'transition':
            - W_mean_delta_prev: Differenz zwischen W_mean und W_mean des vorherigen Zustands
            - W_mean_delta_next: Differenz zwischen W_mean und W_mean des Folgezustands
        """

        # Check for low-level parser errors
        if processed_data["has_datasource_error"]:
            processed_data["error"] = "; ".join(processed_data["datasource_errors"])
            return False

        # Note that the low-level parser (EnergyTraceLog) already checks
        # whether the transition count is correct

        return True

    def _measurement_is_valid_01(self, processed_data):
        """
        Check if a dfatool v0 or v1 measurement is valid.

        processed_data layout:
        'fileno' : measurement['fileno'],
        'info' : measurement['info'],
        'triggers' : len(trigidx),
        'first_trig' : trigidx[0] * 10,
        'calibration' : caldata,
        'energy_trace' : mim.analyze_states(charges, trigidx, vcalfunc)
            A sequence of unnamed, unparameterized states and transitions with
            power and timing data
        'expected_trace' : trace from PTA DFS (with parameter data)
        mim.analyze_states returns a list of (alternating) states and transitions.
        Each element is a dict containing:
            - isa: 'state' oder 'transition'
            - clip_rate: range(0..1) Anteil an Clipping im Energieverbrauch
            - raw_mean: Mittelwert der Rohwerte
            - raw_std: Standardabweichung der Rohwerte
            - uW_mean: Mittelwert der (kalibrierten) Leistungsaufnahme
            - uW_std: Standardabweichung der (kalibrierten) Leistungsaufnahme
            - us: Dauer

            Nur falls isa == 'transition':
            - timeout: Dauer des vorherigen Zustands
            - uW_mean_delta_prev: Differenz zwischen uW_mean und uW_mean des vorherigen Zustands
            - uW_mean_delta_next: Differenz zwischen uW_mean und uW_mean des Folgezustands
        """
        setup = self.setup_by_fileno[processed_data["fileno"]]
        if "expected_trace" in processed_data:
            traces = processed_data["expected_trace"]
        else:
            traces = self.traces_by_fileno[processed_data["fileno"]]
        state_duration = setup["state_duration"]

        # Check MIMOSA error
        if processed_data["has_datasource_error"]:
            processed_data["error"] = "; ".join(processed_data["datasource_errors"])
            return False

        # Check trigger count
        sched_trigger_count = 0
        for run in traces:
            sched_trigger_count += len(run["trace"])
        if sched_trigger_count != processed_data["triggers"]:
            processed_data[
                "error"
            ] = "got {got:d} trigger edges, expected {exp:d}".format(
                got=processed_data["triggers"], exp=sched_trigger_count
            )
            return False
        # Check state durations. Very short or long states can indicate a
        # missed trigger signal which wasn't detected due to duplicate
        # triggers elsewhere
        online_datapoints = []
        for run_idx, run in enumerate(traces):
            for trace_part_idx in range(len(run["trace"])):
                online_datapoints.append((run_idx, trace_part_idx))
        for offline_idx, online_ref in enumerate(online_datapoints):
            online_run_idx, online_trace_part_idx = online_ref
            offline_trace_part = processed_data["energy_trace"][offline_idx]
            online_trace_part = traces[online_run_idx]["trace"][online_trace_part_idx]

            if self._parameter_names is None:
                self._parameter_names = sorted(online_trace_part["parameter"].keys())

            if sorted(online_trace_part["parameter"].keys()) != self._parameter_names:
                processed_data[
                    "error"
                ] = "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) has inconsistent parameter set: should be {param_want:s}, is {param_is:s}".format(
                    off_idx=offline_idx,
                    on_idx=online_run_idx,
                    on_sub=online_trace_part_idx,
                    on_name=online_trace_part["name"],
                    param_want=self._parameter_names,
                    param_is=sorted(online_trace_part["parameter"].keys()),
                )

            if online_trace_part["isa"] != offline_trace_part["isa"]:
                processed_data[
                    "error"
                ] = "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) claims to be {off_isa:s}, but should be {on_isa:s}".format(
                    off_idx=offline_idx,
                    on_idx=online_run_idx,
                    on_sub=online_trace_part_idx,
                    on_name=online_trace_part["name"],
                    off_isa=offline_trace_part["isa"],
                    on_isa=online_trace_part["isa"],
                )
                return False

            # Clipping in UNINITIALIZED (offline_idx == 0) can happen during
            # calibration and is handled by MIMOSA
            if (
                offline_idx != 0
                and offline_trace_part["clip_rate"] != 0
                and not self.ignore_clipping
            ):
                processed_data[
                    "error"
                ] = "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) was clipping {clip:f}% of the time".format(
                    off_idx=offline_idx,
                    on_idx=online_run_idx,
                    on_sub=online_trace_part_idx,
                    on_name=online_trace_part["name"],
                    clip=offline_trace_part["clip_rate"] * 100,
                )
                return False

            if (
                online_trace_part["isa"] == "state"
                and online_trace_part["name"] != "UNINITIALIZED"
                and len(traces[online_run_idx]["trace"]) > online_trace_part_idx + 1
            ):
                online_prev_transition = traces[online_run_idx]["trace"][
                    online_trace_part_idx - 1
                ]
                online_next_transition = traces[online_run_idx]["trace"][
                    online_trace_part_idx + 1
                ]
                try:
                    if self._state_is_too_short(
                        online_trace_part,
                        offline_trace_part,
                        state_duration,
                        online_next_transition,
                    ):
                        processed_data[
                            "error"
                        ] = "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) is too short (duration = {dur:d} us)".format(
                            off_idx=offline_idx,
                            on_idx=online_run_idx,
                            on_sub=online_trace_part_idx,
                            on_name=online_trace_part["name"],
                            dur=offline_trace_part["us"],
                        )
                        return False
                    if self._state_is_too_long(
                        online_trace_part,
                        offline_trace_part,
                        state_duration,
                        online_prev_transition,
                    ):
                        processed_data[
                            "error"
                        ] = "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) is too long (duration = {dur:d} us)".format(
                            off_idx=offline_idx,
                            on_idx=online_run_idx,
                            on_sub=online_trace_part_idx,
                            on_name=online_trace_part["name"],
                            dur=offline_trace_part["us"],
                        )
                        return False
                except KeyError:
                    pass
                    # TODO es gibt next_transitions ohne 'plan'
        return True

    def _merge_online_and_offline(self, measurement):
        # Edits self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline']
        # and self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline_aggregates'] in place
        # (appends data from measurement['energy_trace'])
        # If measurement['expected_trace'] exists, it is edited in place instead
        online_datapoints = []
        if "expected_trace" in measurement:
            traces = measurement["expected_trace"]
            traces = self.traces_by_fileno[measurement["fileno"]]
        else:
            traces = self.traces_by_fileno[measurement["fileno"]]
        for run_idx, run in enumerate(traces):
            for trace_part_idx in range(len(run["trace"])):
                online_datapoints.append((run_idx, trace_part_idx))
        for offline_idx, online_ref in enumerate(online_datapoints):
            online_run_idx, online_trace_part_idx = online_ref
            offline_trace_part = measurement["energy_trace"][offline_idx]
            online_trace_part = traces[online_run_idx]["trace"][online_trace_part_idx]

            if "offline" not in online_trace_part:
                online_trace_part["offline"] = [offline_trace_part]
            else:
                online_trace_part["offline"].append(offline_trace_part)

            paramkeys = sorted(online_trace_part["parameter"].keys())

            paramvalues = list()

            for paramkey in paramkeys:
                if type(online_trace_part["parameter"][paramkey]) is list:
                    paramvalues.append(
                        soft_cast_int(
                            online_trace_part["parameter"][paramkey][
                                measurement["repeat_id"]
                            ]
                        )
                    )
                else:
                    paramvalues.append(
                        soft_cast_int(online_trace_part["parameter"][paramkey])
                    )

            # NB: Unscheduled transitions do not have an 'args' field set.
            # However, they should only be caused by interrupts, and
            # interrupts don't have args anyways.
            if arg_support_enabled and "args" in online_trace_part:
                paramvalues.extend(map(soft_cast_int, online_trace_part["args"]))

            if "offline_aggregates" not in online_trace_part:
                online_trace_part["offline_attributes"] = [
                    "power",
                    "duration",
                    "energy",
                ]
                online_trace_part["offline_aggregates"] = {
                    "power": [],
                    "duration": [],
                    "power_std": [],
                    "energy": [],
                    "paramkeys": [],
                    "param": [],
                }
                if online_trace_part["isa"] == "transition":
                    online_trace_part["offline_attributes"].extend(
                        ["rel_energy_prev", "rel_energy_next", "timeout"]
                    )
                    online_trace_part["offline_aggregates"]["rel_energy_prev"] = []
                    online_trace_part["offline_aggregates"]["rel_energy_next"] = []
                    online_trace_part["offline_aggregates"]["timeout"] = []

            # Note: All state/transitions are 20us "too long" due to injected
            # active wait states. These are needed to work around MIMOSA's
            # relatively low sample rate of 100 kHz (10us) and removed here.
            online_trace_part["offline_aggregates"]["power"].append(
                offline_trace_part["uW_mean"]
            )
            online_trace_part["offline_aggregates"]["duration"].append(
                offline_trace_part["us"] - 20
            )
            online_trace_part["offline_aggregates"]["power_std"].append(
                offline_trace_part["uW_std"]
            )
            online_trace_part["offline_aggregates"]["energy"].append(
                offline_trace_part["uW_mean"] * (offline_trace_part["us"] - 20)
            )
            online_trace_part["offline_aggregates"]["paramkeys"].append(paramkeys)
            online_trace_part["offline_aggregates"]["param"].append(paramvalues)
            if online_trace_part["isa"] == "transition":
                online_trace_part["offline_aggregates"]["rel_energy_prev"].append(
                    offline_trace_part["uW_mean_delta_prev"]
                    * (offline_trace_part["us"] - 20)
                )
                online_trace_part["offline_aggregates"]["rel_energy_next"].append(
                    offline_trace_part["uW_mean_delta_next"]
                    * (offline_trace_part["us"] - 20)
                )
                online_trace_part["offline_aggregates"]["timeout"].append(
                    offline_trace_part["timeout"]
                )

    def _merge_online_and_etlog(self, measurement):
        # Edits self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline']
        # and self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline_aggregates'] in place
        # (appends data from measurement['energy_trace'])
        online_datapoints = []
        traces = self.traces_by_fileno[measurement["fileno"]]
        for run_idx, run in enumerate(traces):
            for trace_part_idx in range(len(run["trace"])):
                online_datapoints.append((run_idx, trace_part_idx))
        for offline_idx, online_ref in enumerate(online_datapoints):
            online_run_idx, online_trace_part_idx = online_ref
            offline_trace_part = measurement["energy_trace"][offline_idx]
            online_trace_part = traces[online_run_idx]["trace"][online_trace_part_idx]

            if "offline" not in online_trace_part:
                online_trace_part["offline"] = [offline_trace_part]
            else:
                online_trace_part["offline"].append(offline_trace_part)

            paramkeys = sorted(online_trace_part["parameter"].keys())

            paramvalues = list()

            for paramkey in paramkeys:
                if type(online_trace_part["parameter"][paramkey]) is list:
                    paramvalues.append(
                        soft_cast_int(
                            online_trace_part["parameter"][paramkey][
                                measurement["repeat_id"]
                            ]
                        )
                    )
                else:
                    paramvalues.append(
                        soft_cast_int(online_trace_part["parameter"][paramkey])
                    )

            # NB: Unscheduled transitions do not have an 'args' field set.
            # However, they should only be caused by interrupts, and
            # interrupts don't have args anyways.
            if arg_support_enabled and "args" in online_trace_part:
                paramvalues.extend(map(soft_cast_int, online_trace_part["args"]))

            if "offline_aggregates" not in online_trace_part:
                online_trace_part["offline_aggregates"] = {
                    "offline_attributes": ["power", "duration", "energy"],
                    "duration": list(),
                    "power": list(),
                    "power_std": list(),
                    "energy": list(),
                    "paramkeys": list(),
                    "param": list(),
                }

            offline_aggregates = online_trace_part["offline_aggregates"]

            # if online_trace_part['isa'] == 'transitions':
            #    online_trace_part['offline_attributes'].extend(['rel_energy_prev', 'rel_energy_next'])
            #    offline_aggregates['rel_energy_prev'] = list()
            #    offline_aggregates['rel_energy_next'] = list()

            offline_aggregates["duration"].append(offline_trace_part["s"] * 1e6)
            offline_aggregates["power"].append(offline_trace_part["W_mean"] * 1e6)
            offline_aggregates["power_std"].append(offline_trace_part["W_std"] * 1e6)
            offline_aggregates["energy"].append(
                offline_trace_part["W_mean"] * offline_trace_part["s"] * 1e12
            )
            offline_aggregates["paramkeys"].append(paramkeys)
            offline_aggregates["param"].append(paramvalues)

            # if online_trace_part['isa'] == 'transition':
            #    offline_aggregates['rel_energy_prev'].append(offline_trace_part['W_mean_delta_prev'] * offline_trace_part['s'] * 1e12)
            #    offline_aggregates['rel_energy_next'].append(offline_trace_part['W_mean_delta_next'] * offline_trace_part['s'] * 1e12)

    def _concatenate_traces(self, list_of_traces):
        """
        Concatenate `list_of_traces` (list of lists) into a single trace while adjusting trace IDs.

        :param list_of_traces: List of list of traces.
        :returns: List of traces with ['id'] in ascending order and ['orig_id'] as previous ['id']
        """

        trace_output = list()
        for trace in list_of_traces:
            trace_output.extend(trace.copy())
        for i, trace in enumerate(trace_output):
            trace["orig_id"] = trace["id"]
            trace["id"] = i
        return trace_output

    def get_preprocessed_data(self):
        """
        Return a list of DFA traces annotated with energy, timing, and parameter data.
        The list is cached on disk, unless the constructor was called with `with_traces` set.

        Each DFA trace contains the following elements:
         * `id`: Numeric ID, starting with 1
         * `total_energy`: Total amount of energy (as measured by MIMOSA) in the entire trace
         * `orig_id`: Original trace ID. May differ when concatenating multiple (different) benchmarks into one analysis, i.e., when calling RawData() with more than one file argument.
         * `trace`: List of the individual states and transitions in this trace. Always contains an even number of elements, staring with the first state (typically "UNINITIALIZED") and ending with a transition.

        Each trace element (that is, an entry of the `trace` list mentioned above) contains the following elements:
         * `isa`: "state" or "transition"
         * `name`: name
         * `offline`: List of offline measumerents for this state/transition. Each entry contains a result for this state/transition during one benchmark execution.
           Entry contents:
            - `clip_rate`: rate of clipped energy measurements, 0 .. 1
            - `raw_mean`: mean raw MIMOSA value
            - `raw_std`: standard deviation of raw MIMOSA value
            - `uW_mean`: mean power draw, uW
            - `uw_std`: standard deviation of power draw, uW
            - `us`: state/transition duration, us
            - `uW_mean_delta_prev`: (only for transitions) difference between uW_mean of this transition and uW_mean of previous state
            - `uW_mean_elta_next`: (only for transitions) difference between uW_mean of this transition and uW_mean of next state
            - `timeout`: (only for transitions) duration of previous state, us
         * `offline_aggregates`: Aggregate of `offline` entries. dict of lists, each list entry has the same length
            - `duration`: state/transition durations ("us"), us
            - `energy`: state/transition energy ("us * uW_mean"), us
            - `power`: mean power draw ("uW_mean"), uW
            - `power_std`: standard deviations of power draw ("uW_std"), uW^2
            - `paramkeys`: List of lists, each sub-list contains the parameter names corresponding to the `param` entries
            - `param`: List of lists, each sub-list contains the parameter values for this measurement. Typically, all sub-lists are the same.
            - `rel_energy_prev`: (only for transitions) transition energy relative to previous state mean power, pJ
            - `rel_energy_next`: (only for transitions) transition energy relative to next state mean power, pJ
            - `timeout`: (only for transitions) duration of previous state, us
         * `offline_attributes`: List containing the keys of `offline_aggregates` which are meant to be part of themodel.
           This list ultimately decides which hardware/software attributes the model describes.
           If isa == state, it contains power, duration, energy
           If isa == transition, it contains power, duration, energy, rel_energy_prev, rel_energy_next, timeout
         * `online`: List of online estimations for this state/transition. Each entry contains a result for this state/transition during one benchmark execution.
          Entry contents for isa == state:
            - `time`: state/transition
          Entry contents for isa == transition:
            - `timeout`: Duration of previous state, measured using on-board timers
         * `parameter`: dictionary describing parameter values for this state/transition. Parameter values refer to the begin of the state/transition and do not account for changes made by the transition.
         * `plan`: Dictionary describing expected behaviour according to schedule / offline model.
           Contents for isa == state: `energy`, `power`, `time`
           Contents for isa == transition: `energy`, `timeout`, `level`.
           If level is "user", the transition is part of the regular driver API. If level is "epilogue", it is an interrupt service routine and not called explicitly.
        Each transition also contains:
         * `args`: List of arguments the corresponding function call was called with. args entries are strings which are not necessarily numeric
         * `code`: List of function name (first entry) and arguments (remaining entries) of the corresponding function call
        """
        if self.preprocessed:
            return self.traces
        if self.version == 0:
            self._preprocess_012(0)
        elif self.version == 1:
            self._preprocess_012(1)
        elif self.version == 2:
            self._preprocess_012(2)
        self.preprocessed = True
        self.save_cache()
        return self.traces

    def _preprocess_012(self, version):
        """Load raw MIMOSA data and turn it into measurements which are ready to be analyzed."""
        offline_data = []
        for i, filename in enumerate(self.filenames):

            if version == 0:

                with tarfile.open(filename) as tf:
                    self.setup_by_fileno.append(json.load(tf.extractfile("setup.json")))
                    self.traces_by_fileno.append(
                        json.load(tf.extractfile("src/apps/DriverEval/DriverLog.json"))
                    )
                    for member in tf.getmembers():
                        _, extension = os.path.splitext(member.name)
                        if extension == ".mim":
                            offline_data.append(
                                {
                                    "content": tf.extractfile(member).read(),
                                    "fileno": i,
                                    "info": member,
                                    "setup": self.setup_by_fileno[i],
                                    "with_traces": self.with_traces,
                                }
                            )

            elif version == 1:

                new_filenames = list()
                with tarfile.open(filename) as tf:
                    ptalog = json.load(tf.extractfile(tf.getmember("ptalog.json")))
                    self.pta = ptalog["pta"]

                    # Benchmark code may be too large to be executed in a single
                    # run, so benchmarks (a benchmark is basically a list of DFA runs)
                    # may be split up. To accomodate this, ptalog['traces'] is
                    # a list of lists: ptalog['traces'][0] corresponds to the
                    # first benchmark part, ptalog['traces'][1] to the
                    # second, and so on. ptalog['traces'][0][0] is the first
                    # trace (a sequence of states and transitions) in the
                    # first benchmark part, ptalog['traces'][0][1] the second, etc.
                    #
                    # As traces are typically repeated to minimize the effect
                    # of random noise, observations for each benchmark part
                    # are also lists. In this case, this applies in two
                    # cases: traces[i][j]['parameter'][some_param] is either
                    # a value (if the parameter is controlld by software)
                    # or a list (if the parameter is known a posteriori, e.g.
                    # "how many retransmissions did this packet take?").
                    #
                    # The second case is the MIMOSA energy measurements, which
                    # are listed in ptalog['files']. ptalog['files'][0]
                    # contains a list of files for the first benchmark part,
                    # ptalog['files'][0][0] is its first iteration/repetition,
                    # ptalog['files'][0][1] the second, etc.

                    for j, traces in enumerate(ptalog["traces"]):
                        new_filenames.append("{}#{}".format(filename, j))
                        self.traces_by_fileno.append(traces)
                        self.setup_by_fileno.append(
                            {
                                "mimosa_voltage": ptalog["configs"][j]["voltage"],
                                "mimosa_shunt": ptalog["configs"][j]["shunt"],
                                "state_duration": ptalog["opt"]["sleep"],
                            }
                        )
                        for repeat_id, mim_file in enumerate(ptalog["files"][j]):
                            member = tf.getmember(mim_file)
                            offline_data.append(
                                {
                                    "content": tf.extractfile(member).read(),
                                    "fileno": j,
                                    "info": member,
                                    "setup": self.setup_by_fileno[j],
                                    "repeat_id": repeat_id,
                                    "expected_trace": ptalog["traces"][j],
                                    "with_traces": self.with_traces,
                                }
                            )
                self.filenames = new_filenames

            elif version == 2:

                new_filenames = list()
                with tarfile.open(filename) as tf:
                    ptalog = json.load(tf.extractfile(tf.getmember("ptalog.json")))
                    self.pta = ptalog["pta"]

                    # Benchmark code may be too large to be executed in a single
                    # run, so benchmarks (a benchmark is basically a list of DFA runs)
                    # may be split up. To accomodate this, ptalog['traces'] is
                    # a list of lists: ptalog['traces'][0] corresponds to the
                    # first benchmark part, ptalog['traces'][1] to the
                    # second, and so on. ptalog['traces'][0][0] is the first
                    # trace (a sequence of states and transitions) in the
                    # first benchmark part, ptalog['traces'][0][1] the second, etc.
                    #
                    # As traces are typically repeated to minimize the effect
                    # of random noise, observations for each benchmark part
                    # are also lists. In this case, this applies in two
                    # cases: traces[i][j]['parameter'][some_param] is either
                    # a value (if the parameter is controlld by software)
                    # or a list (if the parameter is known a posteriori, e.g.
                    # "how many retransmissions did this packet take?").
                    #
                    # The second case is the MIMOSA energy measurements, which
                    # are listed in ptalog['files']. ptalog['files'][0]
                    # contains a list of files for the first benchmark part,
                    # ptalog['files'][0][0] is its first iteration/repetition,
                    # ptalog['files'][0][1] the second, etc.

                    # generate-dfa-benchmark uses TimingHarness to obtain timing data.
                    # Data is placed in 'offline_aggregates', which is also
                    # where we are going to store power/energy data.
                    # In case of invalid measurements, this can lead to a
                    # mismatch between duration and power/energy data, e.g.
                    # where duration = [A, B, C], power = [a, b], B belonging
                    # to an invalid measurement and thus power[b] corresponding
                    # to duration[C]. At the moment, this is harmless, but in the
                    # future it might not be.
                    if "offline_aggregates" in ptalog["traces"][0][0]["trace"][0]:
                        for trace_group in ptalog["traces"]:
                            for trace in trace_group:
                                for state_or_transition in trace["trace"]:
                                    offline_aggregates = state_or_transition.pop(
                                        "offline_aggregates", None
                                    )
                                    if offline_aggregates:
                                        state_or_transition[
                                            "online_aggregates"
                                        ] = offline_aggregates

                    for j, traces in enumerate(ptalog["traces"]):
                        new_filenames.append("{}#{}".format(filename, j))
                        self.traces_by_fileno.append(traces)
                        self.setup_by_fileno.append(
                            {
                                "voltage": ptalog["configs"][j]["voltage"],
                                "state_duration": ptalog["opt"]["sleep"],
                            }
                        )
                        for repeat_id, etlog_file in enumerate(ptalog["files"][j]):
                            member = tf.getmember(etlog_file)
                            offline_data.append(
                                {
                                    "content": tf.extractfile(member).read(),
                                    "fileno": j,
                                    "info": member,
                                    "setup": self.setup_by_fileno[j],
                                    "repeat_id": repeat_id,
                                    "expected_trace": ptalog["traces"][j],
                                    "with_traces": self.with_traces,
                                    "transition_names": list(
                                        map(
                                            lambda x: x["name"],
                                            ptalog["pta"]["transitions"],
                                        )
                                    ),
                                }
                            )
                self.filenames = new_filenames
                # TODO remove 'offline_aggregates' from pre-parse data and place
                # it under 'online_aggregates' or similar instead. This way, if
                # a .etlog file fails to parse, its corresponding duration data
                # will not linger in 'offline_aggregates' and confuse the hell
                # out of other code paths

        with Pool() as pool:
            if self.version <= 1:
                measurements = pool.map(_preprocess_mimosa, offline_data)
            elif self.version == 2:
                measurements = pool.map(_preprocess_etlog, offline_data)

        num_valid = 0
        for measurement in measurements:

            if "energy_trace" not in measurement:
                logger.warning(
                    "Skipping {ar:s}/{m:s}: {e:s}".format(
                        ar=self.filenames[measurement["fileno"]],
                        m=measurement["info"].name,
                        e="; ".join(measurement["datasource_errors"]),
                    )
                )
                continue

            if version == 0:
                # Strip the last state (it is not part of the scheduled measurement)
                measurement["energy_trace"].pop()
            elif version == 1:
                # The first online measurement is the UNINITIALIZED state. In v1,
                # it is not part of the expected PTA trace -> remove it.
                measurement["energy_trace"].pop(0)

            if version == 0 or version == 1:
                if self._measurement_is_valid_01(measurement):
                    self._merge_online_and_offline(measurement)
                    num_valid += 1
                else:
                    logger.warning(
                        "Skipping {ar:s}/{m:s}: {e:s}".format(
                            ar=self.filenames[measurement["fileno"]],
                            m=measurement["info"].name,
                            e=measurement["error"],
                        )
                    )
            elif version == 2:
                if self._measurement_is_valid_2(measurement):
                    self._merge_online_and_etlog(measurement)
                    num_valid += 1
                else:
                    logger.warning(
                        "Skipping {ar:s}/{m:s}: {e:s}".format(
                            ar=self.filenames[measurement["fileno"]],
                            m=measurement["info"].name,
                            e=measurement["error"],
                        )
                    )
        logger.info(
            "{num_valid:d}/{num_total:d} measurements are valid".format(
                num_valid=num_valid, num_total=len(measurements)
            )
        )
        if version == 0:
            self.traces = self._concatenate_traces(self.traces_by_fileno)
        elif version == 1:
            self.traces = self._concatenate_traces(
                map(lambda x: x["expected_trace"], measurements)
            )
            self.traces = self._concatenate_traces(self.traces_by_fileno)
        elif version == 2:
            self.traces = self._concatenate_traces(self.traces_by_fileno)
        self.preprocessing_stats = {
            "num_runs": len(measurements),
            "num_valid": num_valid,
        }


def _add_trace_data_to_aggregate(aggregate, key, element):
    # Only cares about element['isa'], element['offline_aggregates'], and
    # element['plan']['level']
    if key not in aggregate:
        aggregate[key] = {"isa": element["isa"]}
        for datakey in element["offline_aggregates"].keys():
            aggregate[key][datakey] = []
        if element["isa"] == "state":
            aggregate[key]["attributes"] = ["power"]
        else:
            # TODO do not hardcode values
            aggregate[key]["attributes"] = [
                "duration",
                "energy",
                "rel_energy_prev",
                "rel_energy_next",
            ]
            # Uncomment this line if you also want to analyze mean transition power
            # aggrgate[key]['attributes'].append('power')
            if "plan" in element and element["plan"]["level"] == "epilogue":
                aggregate[key]["attributes"].insert(0, "timeout")
        attributes = aggregate[key]["attributes"].copy()
        for attribute in attributes:
            if attribute not in element["offline_aggregates"]:
                aggregate[key]["attributes"].remove(attribute)
    for datakey, dataval in element["offline_aggregates"].items():
        aggregate[key][datakey].extend(dataval)


def pta_trace_to_aggregate(traces, ignore_trace_indexes=[]):
    u"""
    Convert preprocessed DFA traces from peripherals/drivers to by_name aggregate for PTAModel.

    arguments:
    traces -- [ ... Liste von einzelnen Läufen (d.h. eine Zustands- und Transitionsfolge UNINITIALIZED -> foo -> FOO -> bar -> BAR -> ...)
        Jeder Lauf:
        - id: int Nummer des Laufs, beginnend bei 1
        - trace: [ ... Liste von Zuständen und Transitionen
            Jeweils:
            - name: str Name
            - isa: str state // transition
            - parameter: { ... globaler Parameter: aktueller wert. null falls noch nicht eingestellt }
            - args: [ Funktionsargumente, falls isa == 'transition' ]
            - offline_aggregates:
                - power: [float(uW)] Mittlere Leistung während Zustand/Transitions
                - power_std: [float(uW^2)] Standardabweichung der Leistung
                - duration: [int(us)] Dauer
                - energy: [float(pJ)] Energieaufnahme des Zustands / der Transition
                - clip_rate: [float(0..1)] Clipping
                - paramkeys: [[str]] Name der berücksichtigten Parameter
                - param: [int // str] Parameterwerte. Quasi-Duplikat von 'parameter' oben
                Falls isa == 'transition':
                - timeout: [int(us)] Dauer des vorherigen Zustands
                - rel_energy_prev: [int(pJ)]
                - rel_energy_next: [int(pJ)]
        ]
    ]
    ignore_trace_indexes -- list of trace indexes. The corresponding taces will be ignored.

    returns a tuple of three elements:
    by_name -- measurements aggregated by state/transition name, annotated with parameter values
    parameter_names -- list of parameter names
    arg_count -- dict mapping transition names to the number of arguments of their corresponding driver function

    by_name layout:
    Dictionary with one key per state/transition ('send', 'TX', ...).
    Each element is in turn a dict with the following elements:
    - isa: 'state' or 'transition'
    - power: list of mean power measurements in µW
    - duration: list of durations in µs
    - power_std: list of stddev of power per state/transition
    - energy: consumed energy (power*duration) in pJ
    - paramkeys: list of parameter names in each measurement (-> list of lists)
    - param: list of parameter values in each measurement (-> list of lists)
    - attributes: list of keys that should be analyzed,
        e.g. ['power', 'duration']
    additionally, only if isa == 'transition':
    - timeout: list of duration of previous state in µs
    - rel_energy_prev: transition energy relative to previous state mean power in pJ
    - rel_energy_next: transition energy relative to next state mean power in pJ
    """
    arg_count = dict()
    by_name = dict()
    parameter_names = sorted(traces[0]["trace"][0]["parameter"].keys())
    for run in traces:
        if run["id"] not in ignore_trace_indexes:
            for elem in run["trace"]:
                if (
                    elem["isa"] == "transition"
                    and not elem["name"] in arg_count
                    and "args" in elem
                ):
                    arg_count[elem["name"]] = len(elem["args"])
                if elem["name"] != "UNINITIALIZED":
                    _add_trace_data_to_aggregate(by_name, elem["name"], elem)
    for elem in by_name.values():
        for key in elem["attributes"]:
            elem[key] = np.array(elem[key])
    return by_name, parameter_names, arg_count


class EnergyTraceLog:
    """
    EnergyTrace log loader for DFA traces.

    Expects an EnergyTrace log file generated via msp430-etv / energytrace-util
    and a dfatool-generated benchmark. An EnergyTrace log consits of a series
    of measurements. Each measurement has a timestamp, mean current, voltage,
    and cumulative energy since start of measurement. Each transition is
    preceded by a Code128 barcode embedded into the energy consumption by
    toggling a LED.

    Note that the baseline power draw of board and peripherals is not subtracted
    at the moment.
    """

    def __init__(
        self,
        voltage: float,
        state_duration: int,
        transition_names: list,
        with_traces=False,
    ):
        """
        Create a new EnergyTraceLog object.

        :param voltage: supply voltage [V], usually 3.3 V
        :param state_duration: state duration [ms]
        :param transition_names: list of transition names in PTA transition order.
            Needed to map barcode synchronization numbers to transitions.
        """
        self.voltage = voltage
        self.state_duration = state_duration * 1e-3
        self.transition_names = transition_names
        self.with_traces = with_traces
        self.errors = list()

        # TODO auto-detect
        self.led_power = 10e-3

        # multipass/include/object/ptalog.h#startTransition
        self.module_duration = 5e-3

        # multipass/include/object/ptalog.h#startTransition
        self.quiet_zone_duration = 60e-3

        # TODO auto-detect?
        # Note that we consider barcode duration after start, so only the
        # quiet zone -after- the code is relevant
        self.min_barcode_duration = 57 * self.module_duration + self.quiet_zone_duration
        self.max_barcode_duration = 68 * self.module_duration + self.quiet_zone_duration

    def load_data(self, log_data):
        """
        Load log data (raw energytrace .txt file, one line per event).

        :param log_data: raw energytrace log file in 4-column .txt format
        """

        if not zbar_available:
            logger.error("zbar module is not available")
            self.errors.append(
                'zbar module is not available. Try "apt install python3-zbar"'
            )
            return list()

        lines = log_data.decode("ascii").split("\n")
        data_count = sum(map(lambda x: len(x) > 0 and x[0] != "#", lines))
        data_lines = filter(lambda x: len(x) > 0 and x[0] != "#", lines)

        data = np.empty((data_count, 4))

        for i, line in enumerate(data_lines):
            fields = line.split(" ")
            if len(fields) == 4:
                timestamp, current, voltage, total_energy = map(int, fields)
            elif len(fields) == 5:
                # cpustate = fields[0]
                timestamp, current, voltage, total_energy = map(int, fields[1:])
            else:
                raise RuntimeError('cannot parse line "{}"'.format(line))
            data[i] = [timestamp, current, voltage, total_energy]

        self.interval_start_timestamp = data[:-1, 0] * 1e-6
        self.interval_duration = (data[1:, 0] - data[:-1, 0]) * 1e-6
        self.interval_power = ((data[1:, 3] - data[:-1, 3]) * 1e-9) / (
            (data[1:, 0] - data[:-1, 0]) * 1e-6
        )

        m_duration_us = data[-1, 0] - data[0, 0]

        self.sample_rate = data_count / (m_duration_us * 1e-6)

        logger.debug(
            "got {} samples with {} seconds of log data ({} Hz)".format(
                data_count, m_duration_us * 1e-6, self.sample_rate
            )
        )

        return (
            self.interval_start_timestamp,
            self.interval_duration,
            self.interval_power,
        )

    def ts_to_index(self, timestamp):
        """
        Convert timestamp in seconds to interval_start_timestamp / interval_duration / interval_power index.

        Returns the index of the interval which timestamp is part of.
        """
        return self._ts_to_index(timestamp, 0, len(self.interval_start_timestamp))

    def _ts_to_index(self, timestamp, left_index, right_index):
        if left_index == right_index:
            return left_index
        if left_index + 1 == right_index:
            return left_index

        mid_index = left_index + (right_index - left_index) // 2

        # I'm feeling lucky
        if (
            timestamp > self.interval_start_timestamp[mid_index]
            and timestamp
            <= self.interval_start_timestamp[mid_index]
            + self.interval_duration[mid_index]
        ):
            return mid_index

        if timestamp <= self.interval_start_timestamp[mid_index]:
            return self._ts_to_index(timestamp, left_index, mid_index)

        return self._ts_to_index(timestamp, mid_index, right_index)

    def analyze_states(self, traces, offline_index: int):
        u"""
        Split log data into states and transitions and return duration, energy, and mean power for each element.

        :param traces: expected traces, needed to synchronize with the measurement.
            traces is a list of runs, traces[*]['trace'] is a single run
            (i.e. a list of states and transitions, starting with a transition
            and ending with a state).
        :param offline_index: This function uses traces[*]['trace'][*]['online_aggregates']['duration'][offline_index] to find sync codes

        :param charges: raw charges (each element describes the charge in pJ transferred during 10 µs)
        :param trigidx: "charges" indexes corresponding to a trigger edge, see `trigger_edges`
        :param ua_func: charge(pJ) -> current(µA) function as returned by `calibration_function`

        :returns: maybe returns list of states and transitions, both starting andending with a state.
            Each element is a dict containing:
            * `isa`: 'state' or 'transition'
            * `clip_rate`: range(0..1) Anteil an Clipping im Energieverbrauch
            * `raw_mean`: Mittelwert der Rohwerte
            * `raw_std`: Standardabweichung der Rohwerte
            * `uW_mean`: Mittelwert der (kalibrierten) Leistungsaufnahme
            * `uW_std`: Standardabweichung der (kalibrierten) Leistungsaufnahme
            * `us`: Dauer
            if isa == 'transition, it also contains:
            * `timeout`: Dauer des vorherigen Zustands
            * `uW_mean_delta_prev`: Differenz zwischen uW_mean und uW_mean des vorherigen Zustands
            * `uW_mean_delta_next`: Differenz zwischen uW_mean und uW_mean des Folgezustands
        """

        first_sync = self.find_first_sync()

        energy_trace = list()

        expected_transitions = list()
        for trace_number, trace in enumerate(traces):
            for state_or_transition_number, state_or_transition in enumerate(
                trace["trace"]
            ):
                if state_or_transition["isa"] == "transition":
                    try:
                        expected_transitions.append(
                            (
                                state_or_transition["name"],
                                state_or_transition["online_aggregates"]["duration"][
                                    offline_index
                                ]
                                * 1e-6,
                            )
                        )
                    except IndexError:
                        self.errors.append(
                            'Entry #{} ("{}") in trace #{} has no duration entry for offline_index/repeat_id {}'.format(
                                state_or_transition_number,
                                state_or_transition["name"],
                                trace_number,
                                offline_index,
                            )
                        )
                        return energy_trace

        next_barcode = first_sync

        for name, duration in expected_transitions:
            bc, start, stop, end = self.find_barcode(next_barcode)
            if bc is None:
                logger.error('did not find transition "{}"'.format(name))
                break
            next_barcode = end + self.state_duration + duration
            logger.debug(
                '{} barcode "{}" area: {:0.2f} .. {:0.2f} / {:0.2f} seconds'.format(
                    offline_index, bc, start, stop, end
                )
            )
            if bc != name:
                logger.error('mismatch: expected "{}", got "{}"'.format(name, bc))
            logger.debug(
                "{} estimated transition area: {:0.3f} .. {:0.3f} seconds".format(
                    offline_index, end, end + duration
                )
            )

            transition_start_index = self.ts_to_index(end)
            transition_done_index = self.ts_to_index(end + duration) + 1
            state_start_index = transition_done_index
            state_done_index = (
                self.ts_to_index(end + duration + self.state_duration) + 1
            )

            logger.debug(
                "{} estimated transitionindex: {:0.3f} .. {:0.3f} seconds".format(
                    offline_index,
                    transition_start_index / self.sample_rate,
                    transition_done_index / self.sample_rate,
                )
            )

            transition_power_W = self.interval_power[
                transition_start_index:transition_done_index
            ]

            transition = {
                "isa": "transition",
                "W_mean": np.mean(transition_power_W),
                "W_std": np.std(transition_power_W),
                "s": duration,
                "s_coarse": self.interval_start_timestamp[transition_done_index]
                - self.interval_start_timestamp[transition_start_index],
            }

            if self.with_traces:
                transition["uW"] = transition_power_W * 1e6

            energy_trace.append(transition)

            if len(energy_trace) > 1:
                energy_trace[-1]["W_mean_delta_prev"] = (
                    energy_trace[-1]["W_mean"] - energy_trace[-2]["W_mean"]
                )

            state_power_W = self.interval_power[state_start_index:state_done_index]
            state = {
                "isa": "state",
                "W_mean": np.mean(state_power_W),
                "W_std": np.std(state_power_W),
                "s": self.state_duration,
                "s_coarse": self.interval_start_timestamp[state_done_index]
                - self.interval_start_timestamp[state_start_index],
            }

            if self.with_traces:
                state["uW"] = state_power_W * 1e6

            energy_trace.append(state)

            energy_trace[-2]["W_mean_delta_next"] = (
                energy_trace[-2]["W_mean"] - energy_trace[-1]["W_mean"]
            )

        expected_transition_count = len(expected_transitions)
        recovered_transition_ount = len(energy_trace) // 2

        if expected_transition_count != recovered_transition_ount:
            self.errors.append(
                "Expected {:d} transitions, got {:d}".format(
                    expected_transition_count, recovered_transition_ount
                )
            )

        return energy_trace

    def find_first_sync(self):
        # LED Power is approx. self.led_power W, use self.led_power/2 W above surrounding median as threshold
        sync_threshold_power = (
            np.median(self.interval_power[: int(3 * self.sample_rate)])
            + self.led_power / 3
        )
        for i, ts in enumerate(self.interval_start_timestamp):
            if ts > 2 and self.interval_power[i] > sync_threshold_power:
                return self.interval_start_timestamp[i - 300]
        return None

    def find_barcode(self, start_ts):
        """
        Return absolute position and content of the next barcode following `start_ts`.

        :param interval_ts: list of start timestamps (one per measurement interval) [s]
        :param interval_power: mean power per measurement interval [W]
        :param start_ts: timestamp at which to start looking for a barcode [s]
        """

        for i, ts in enumerate(self.interval_start_timestamp):
            if ts >= start_ts:
                start_position = i
                break

        # Lookaround: 100 ms in both directions
        lookaround = int(0.1 * self.sample_rate)

        # LED Power is approx. self.led_power W, use self.led_power/2 W above surrounding median as threshold
        sync_threshold_power = (
            np.median(
                self.interval_power[
                    start_position - lookaround : start_position + lookaround
                ]
            )
            + self.led_power / 3
        )

        logger.debug(
            "looking for barcode starting at {:0.2f} s, threshold is {:0.1f} mW".format(
                start_ts, sync_threshold_power * 1e3
            )
        )

        sync_area_start = None
        sync_start_ts = None
        sync_area_end = None
        sync_end_ts = None
        for i, ts in enumerate(self.interval_start_timestamp):
            if (
                sync_area_start is None
                and ts >= start_ts
                and self.interval_power[i] > sync_threshold_power
            ):
                sync_area_start = i - 300
                sync_start_ts = ts
            if (
                sync_area_start is not None
                and sync_area_end is None
                and ts > sync_start_ts + self.min_barcode_duration
                and (
                    ts > sync_start_ts + self.max_barcode_duration
                    or abs(sync_threshold_power - self.interval_power[i])
                    > self.led_power
                )
            ):
                sync_area_end = i
                sync_end_ts = ts
                break

        barcode_data = self.interval_power[sync_area_start:sync_area_end]

        logger.debug(
            "barcode search area: {:0.2f} .. {:0.2f} seconds ({} samples)".format(
                sync_start_ts, sync_end_ts, len(barcode_data)
            )
        )

        bc, start, stop, padding_bits = self.find_barcode_in_power_data(barcode_data)

        if bc is None:
            return None, None, None, None

        start_ts = self.interval_start_timestamp[sync_area_start + start]
        stop_ts = self.interval_start_timestamp[sync_area_start + stop]

        end_ts = (
            stop_ts + self.module_duration * padding_bits + self.quiet_zone_duration
        )

        # barcode content, barcode start timestamp, barcode stop timestamp, barcode end (stop + padding) timestamp
        return bc, start_ts, stop_ts, end_ts

    def find_barcode_in_power_data(self, barcode_data):

        min_power = np.min(barcode_data)
        max_power = np.max(barcode_data)

        # zbar seems to be confused by measurement (and thus image) noise
        # inside of barcodes. As our barcodes are only 1px high, this is
        # likely not trivial to fix.
        # -> Create a black and white (not grayscale) image to avoid this.
        # Unfortunately, this decreases resilience against background noise
        # (e.g. a not-exactly-idle peripheral device or CPU interrupts).
        image_data = np.around(
            1 - ((barcode_data - min_power) / (max_power - min_power))
        )
        image_data *= 255

        # zbar only returns the complete barcode position if it is at least
        # two pixels high. For a 1px barcode, it only returns its right border.

        width = len(image_data)
        height = 2

        image_data = bytes(map(int, image_data)) * height

        # img = Image.frombytes('L', (width, height), image_data).resize((width, 100))
        # img.save('/tmp/test-{}.png'.format(os.getpid()))

        zbimg = zbar.Image(width, height, "Y800", image_data)
        scanner = zbar.ImageScanner()
        scanner.parse_config("enable")

        if scanner.scan(zbimg):
            (sym,) = zbimg.symbols
            content = sym.data
            try:
                sym_start = sym.location[1][0]
            except IndexError:
                sym_start = 0
            sym_end = sym.location[0][0]

            match = re.fullmatch(r"T(\d+)", content)
            if match:
                content = self.transition_names[int(match.group(1))]

            # PTALog barcode generation operates on bytes, so there may be
            # additional non-barcode padding (encoded as LED off / image white).
            # Calculate the amount of extra bits to determine the offset until
            # the transition starts.
            padding_bits = len(Code128(sym.data, charset="B").modules) % 8

            # sym_start leaves out the first two bars, but we don't do anything about that here
            # sym_end leaves out the last three bars, each of which is one padding bit long.
            # as a workaround, we unconditionally increment padding_bits by three.
            padding_bits += 3

            return content, sym_start, sym_end, padding_bits
        else:
            logger.warning("unable to find barcode")
            return None, None, None, None


class MIMOSA:
    """
    MIMOSA log loader for DFA traces with auto-calibration.

    Expects a MIMOSA log file generated via dfatool and a dfatool-generated
    benchmark. A MIMOSA log consists of a series of measurements. Each measurement
    gives the total charge (in pJ) and binary buzzer/trigger value during a 10µs interval.

    There must be a calibration run consisting of at least two seconds with disconnected DUT,
    two seconds with 1 kOhm (984 Ohm), and two seconds with 100 kOhm (99013 Ohm) resistor at
    the start. The first ten seconds of data are reserved for calbiration and must not contain
    measurements, as trigger/buzzer signals are ignored in this time range.

    Resulting data is a list of state/transition/state/transition/... measurements.
    """

    def __init__(self, voltage: float, shunt: int, with_traces=False):
        """
        Initialize MIMOSA loader for a specific voltage and shunt setting.

        :param voltage: MIMOSA DUT supply voltage (V)
        :para mshunt: MIMOSA Shunt (Ohms)
        """
        self.voltage = voltage
        self.shunt = shunt
        self.with_traces = with_traces
        self.r1 = 984  # "1k"
        self.r2 = 99013  # "100k"
        self.errors = list()

    def charge_to_current_nocal(self, charge):
        u"""
        Convert charge per 10µs (in pJ) to mean currents (in µA) without accounting for calibration.

        :param charge: numpy array of charges (pJ per 10µs) as returned by `load_data` or `load_file`

        :returns: numpy array of mean currents (µA per 10µs)
        """
        ua_max = 1.836 / self.shunt * 1000000
        ua_step = ua_max / 65535
        return charge * ua_step

    def _load_tf(self, tf):
        u"""
        Load MIMOSA log data from an open `tarfile` instance.

        :param tf: `tarfile` instance

        :returns: (numpy array of charges (pJ per 10µs), numpy array of triggers (0/1 int, per 10µs))
        """
        num_bytes = tf.getmember("/tmp/mimosa//mimosa_scale_1.tmp").size
        charges = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int32)
        triggers = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int8)
        with tf.extractfile("/tmp/mimosa//mimosa_scale_1.tmp") as f:
            content = f.read()
            iterator = struct.iter_unpack("<I", content)
            i = 0
            for word in iterator:
                charges[i] = word[0] >> 4
                triggers[i] = (word[0] & 0x08) >> 3
                i += 1
        return charges, triggers

    def load_data(self, raw_data):
        u"""
        Load MIMOSA log data from a MIMOSA log file passed as raw byte string

        :param raw_data: MIMOSA log file, passed as raw byte string

        :returns: (numpy array of charges (pJ per 10µs), numpy array of triggers (0/1 int, per 10µs))
        """
        with io.BytesIO(raw_data) as data_object:
            with tarfile.open(fileobj=data_object) as tf:
                return self._load_tf(tf)

    def load_file(self, filename):
        u"""
        Load MIMOSA log data from a MIMOSA log file

        :param filename: MIMOSA log file

        :returns: (numpy array of charges (pJ per 10µs), numpy array of triggers (0/1 int, per 10µs))
        """
        with tarfile.open(filename) as tf:
            return self._load_tf(tf)

    def currents_nocal(self, charges):
        u"""
        Convert charges (pJ per 10µs) to mean currents without accounting for calibration.

        :param charges: numpy array of charges (pJ per 10µs)

        :returns: numpy array of currents (mean µA per 10µs)"""
        ua_max = 1.836 / self.shunt * 1000000
        ua_step = ua_max / 65535
        return charges.astype(np.double) * ua_step

    def trigger_edges(self, triggers):
        """
        Return indexes of trigger edges (both 0->1 and 1->0) in log data.

        Ignores the first 10 seconds, which are used for calibration and may
        contain bogus triggers due to DUT resets.

        :param triggers: trigger array (int, 0/1) as returned by load_data

        :returns: list of int (trigger indices, e.g. [2000000, ...] means the first trigger appears in charges/currents interval 2000000 -> 20s after start of measurements. Keep in mind that each interval is 10µs long, not 1µs, so index values are not µs timestamps)
        """
        trigidx = []

        if len(triggers) < 1000000:
            self.errors.append("MIMOSA log is too short")
            return trigidx

        prevtrig = triggers[999999]

        # if the first trigger is high (i.e., trigger/buzzer pin is active before the benchmark starts),
        # something went wrong and are unable to determine when the first
        # transition starts.
        if prevtrig != 0:
            self.errors.append(
                "Unable to find start of first transition (log starts with trigger == {} != 0)".format(
                    prevtrig
                )
            )

        # if the last trigger is high (i.e., trigger/buzzer pin is active when the benchmark ends),
        # it terminated in the middle of a transition -- meaning that it was not
        # measured in its entirety.
        if triggers[-1] != 0:
            self.errors.append("Log ends during a transition".format(prevtrig))

        # the device is reset for MIMOSA calibration in the first 10s and may
        # send bogus interrupts -> bogus triggers
        for i in range(1000000, triggers.shape[0]):
            trig = triggers[i]
            if trig != prevtrig:
                # Due to MIMOSA's integrate-read-reset cycle, the charge/current
                # interval belonging to this trigger comes two intervals (20µs) later
                trigidx.append(i + 2)
            prevtrig = trig
        return trigidx

    def calibration_edges(self, currents):
        u"""
        Return start/stop indexes of calibration measurements.

        :param currents: uncalibrated currents as reported by MIMOSA. For best results,
            it may help to use a running mean, like so:
            `currents = running_mean(currents_nocal(..., 10))`

        :returns: indices of calibration events in MIMOSA data:
            (disconnect start, disconnect stop, R1 (1k) start, R1 (1k) stop, R2 (100k) start, R2 (100k) stop)
            indices refer to charges/currents arrays, so 0 refers to the first 10µs interval, 1 to the second, and so on.
        """
        r1idx = 0
        r2idx = 0
        ua_r1 = self.voltage / self.r1 * 1000000
        # first second may be bogus
        for i in range(100000, len(currents)):
            if r1idx == 0 and currents[i] > ua_r1 * 0.6:
                r1idx = i
            elif (
                r1idx != 0
                and r2idx == 0
                and i > (r1idx + 180000)
                and currents[i] < ua_r1 * 0.4
            ):
                r2idx = i
        # 2s disconnected, 2s r1, 2s r2  with r1 < r2  ->  ua_r1 > ua_r2
        # allow 5ms buffer in both directions to account for bouncing relais contacts
        return (
            r1idx - 180500,
            r1idx - 500,
            r1idx + 500,
            r2idx - 500,
            r2idx + 500,
            r2idx + 180500,
        )

    def calibration_function(self, charges, cal_edges):
        u"""
        Calculate calibration function from previously determined calibration edges.

        :param charges: raw charges from MIMOSA
        :param cal_edges: calibration edges as returned by calibration_edges

        :returns: (calibration_function, calibration_data):
            calibration_function -- charge in pJ (float) -> current in uA (float).
                Converts the amount of charge in a 10 µs interval to the
                mean current during the same interval.
            calibration_data -- dict containing the following keys:
                edges -- calibration points in the log file, in µs
                offset -- ...
                offset2 --  ...
                slope_low -- ...
                slope_high -- ...
                add_low -- ...
                add_high -- ..
                r0_err_uW -- mean error of uncalibrated data at "∞ Ohm" in µW
                r0_std_uW -- standard deviation of uncalibrated data at "∞ Ohm" in µW
                r1_err_uW -- mean error of uncalibrated data at 1 kOhm
                r1_std_uW -- stddev at 1 kOhm
                r2_err_uW -- mean error at 100 kOhm
                r2_std_uW -- stddev at 100 kOhm
        """
        dis_start, dis_end, r1_start, r1_end, r2_start, r2_end = cal_edges
        if dis_start < 0:
            dis_start = 0
        chg_r0 = charges[dis_start:dis_end]
        chg_r1 = charges[r1_start:r1_end]
        chg_r2 = charges[r2_start:r2_end]
        cal_0_mean = np.mean(chg_r0)
        cal_r1_mean = np.mean(chg_r1)
        cal_r2_mean = np.mean(chg_r2)

        ua_r1 = self.voltage / self.r1 * 1000000
        ua_r2 = self.voltage / self.r2 * 1000000

        if cal_r2_mean > cal_0_mean:
            b_lower = (ua_r2 - 0) / (cal_r2_mean - cal_0_mean)
        else:
            logger.warning("0 uA == %.f uA during calibration" % (ua_r2))
            b_lower = 0

        b_upper = (ua_r1 - ua_r2) / (cal_r1_mean - cal_r2_mean)

        a_lower = -b_lower * cal_0_mean
        a_upper = -b_upper * cal_r2_mean

        if self.shunt == 680:
            # R1 current is higher than shunt range -> only use R2 for calibration
            def calfunc(charge):
                if charge < cal_0_mean:
                    return 0
                else:
                    return charge * b_lower + a_lower

        else:

            def calfunc(charge):
                if charge < cal_0_mean:
                    return 0
                if charge <= cal_r2_mean:
                    return charge * b_lower + a_lower
                else:
                    return charge * b_upper + a_upper + ua_r2

        caldata = {
            "edges": [x * 10 for x in cal_edges],
            "offset": cal_0_mean,
            "offset2": cal_r2_mean,
            "slope_low": b_lower,
            "slope_high": b_upper,
            "add_low": a_lower,
            "add_high": a_upper,
            "r0_err_uW": np.mean(self.currents_nocal(chg_r0)) * self.voltage,
            "r0_std_uW": np.std(self.currents_nocal(chg_r0)) * self.voltage,
            "r1_err_uW": (np.mean(self.currents_nocal(chg_r1)) - ua_r1) * self.voltage,
            "r1_std_uW": np.std(self.currents_nocal(chg_r1)) * self.voltage,
            "r2_err_uW": (np.mean(self.currents_nocal(chg_r2)) - ua_r2) * self.voltage,
            "r2_std_uW": np.std(self.currents_nocal(chg_r2)) * self.voltage,
        }

        # print("if charge < %f : return 0" % cal_0_mean)
        # print("if charge <= %f : return charge * %f + %f" % (cal_r2_mean, b_lower, a_lower))
        # print("else : return charge * %f + %f + %f" % (b_upper, a_upper, ua_r2))

        return calfunc, caldata

    """
    def calcgrad(self, currents, threshold):
        grad = np.gradient(running_mean(currents * self.voltage, 10))
        # len(grad) == len(currents) - 9
        subst = []
        lastgrad = 0
        for i in range(len(grad)):
            # minimum substate duration: 10ms
            if np.abs(grad[i]) > threshold and i - lastgrad > 50:
                # account for skew introduced by running_mean and current
                # ramp slope (parasitic capacitors etc.)
                subst.append(i+10)
                lastgrad = i
        if lastgrad != i:
            subst.append(i+10)
        return subst

    # TODO konfigurierbare min/max threshold und len(gradidx) > X, binaere
    # Sache nach noetiger threshold. postprocessing mit
    # "zwei benachbarte substates haben sehr aehnliche werte / niedrige stddev" -> mergen
    # ... min/max muessen nicht vorgegeben werden, sind ja bekannt (0 / np.max(grad))
    # TODO bei substates / index foo den offset durch running_mean beachten
    # TODO ggf. clustering der 'abs(grad) > threshold' und bestimmung interessanter
    # uebergaenge dadurch?
    def gradfoo(self, currents):
        gradients = np.abs(np.gradient(running_mean(currents * self.voltage, 10)))
        gradmin = np.min(gradients)
        gradmax = np.max(gradients)
        threshold = np.mean([gradmin, gradmax])
        gradidx = self.calcgrad(currents, threshold)
        num_substates = 2
        while len(gradidx) != num_substates:
            if gradmax - gradmin < 0.1:
                # We did our best
                return threshold, gradidx
            if len(gradidx) > num_substates:
                gradmin = threshold
            else:
                gradmax = threshold
            threshold = np.mean([gradmin, gradmax])
            gradidx = self.calcgrad(currents, threshold)
        return threshold, gradidx
    """

    def analyze_states(self, charges, trigidx, ua_func):
        u"""
        Split log data into states and transitions and return duration, energy, and mean power for each element.

        :param charges: raw charges (each element describes the charge in pJ transferred during 10 µs)
        :param trigidx: "charges" indexes corresponding to a trigger edge, see `trigger_edges`
        :param ua_func: charge(pJ) -> current(µA) function as returned by `calibration_function`

        :returns: list of states and transitions, both starting andending with a state.
            Each element is a dict containing:
            * `isa`: 'state' or 'transition'
            * `clip_rate`: range(0..1) Anteil an Clipping im Energieverbrauch
            * `raw_mean`: Mittelwert der Rohwerte
            * `raw_std`: Standardabweichung der Rohwerte
            * `uW_mean`: Mittelwert der (kalibrierten) Leistungsaufnahme
            * `uW_std`: Standardabweichung der (kalibrierten) Leistungsaufnahme
            * `us`: Dauer
            if isa == 'transition, it also contains:
            * `timeout`: Dauer des vorherigen Zustands
            * `uW_mean_delta_prev`: Differenz zwischen uW_mean und uW_mean des vorherigen Zustands
            * `uW_mean_delta_next`: Differenz zwischen uW_mean und uW_mean des Folgezustands
        """
        previdx = 0
        is_state = True
        iterdata = []

        # The last state (between the last transition and end of file) may also
        # be important. Pretend it ends when the log ends.
        trigger_indices = trigidx.copy()
        trigger_indices.append(len(charges))

        for idx in trigger_indices:
            range_raw = charges[previdx:idx]
            range_ua = ua_func(range_raw)
            substates = {}

            if previdx != 0 and idx - previdx > 200:
                thr, subst = 0, []  # self.gradfoo(range_ua)
                if len(subst):
                    statelist = []
                    prevsubidx = 0
                    for subidx in subst:
                        statelist.append(
                            {
                                "duration": (subidx - prevsubidx) * 10,
                                "uW_mean": np.mean(
                                    range_ua[prevsubidx:subidx] * self.voltage
                                ),
                                "uW_std": np.std(
                                    range_ua[prevsubidx:subidx] * self.voltage
                                ),
                            }
                        )
                        prevsubidx = subidx
                    substates = {"threshold": thr, "states": statelist}

            isa = "state"
            if not is_state:
                isa = "transition"

            data = {
                "isa": isa,
                "clip_rate": np.mean(range_raw == 65535),
                "raw_mean": np.mean(range_raw),
                "raw_std": np.std(range_raw),
                "uW_mean": np.mean(range_ua * self.voltage),
                "uW_std": np.std(range_ua * self.voltage),
                "us": (idx - previdx) * 10,
            }

            if self.with_traces:
                data["uW"] = range_ua * self.voltage

            if "states" in substates:
                data["substates"] = substates
                ssum = np.sum(list(map(lambda x: x["duration"], substates["states"])))
                if ssum != data["us"]:
                    logger.warning("duration %d vs %d" % (data["us"], ssum))

            if isa == "transition":
                # subtract average power of previous state
                # (that is, the state from which this transition originates)
                data["uW_mean_delta_prev"] = data["uW_mean"] - iterdata[-1]["uW_mean"]
                # placeholder to avoid extra cases in the analysis
                data["uW_mean_delta_next"] = data["uW_mean"]
                data["timeout"] = iterdata[-1]["us"]
            elif len(iterdata) > 0:
                # subtract average power of next state
                # (the state into which this transition leads)
                iterdata[-1]["uW_mean_delta_next"] = (
                    iterdata[-1]["uW_mean"] - data["uW_mean"]
                )

            iterdata.append(data)

            previdx = idx
            is_state = not is_state
        return iterdata