summaryrefslogtreecommitdiff
path: root/lib/dfatool.py
blob: 5af6cc85a3b126a1fc4d5f5e65d0f68e9d3b0bab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
#!/usr/bin/env python3

import csv
import io
import json
import numpy as np
import os
import re
from scipy import optimize
from sklearn.metrics import r2_score
import struct
import sys
import tarfile
from multiprocessing import Pool
from automata import PTA
from functions import analytic
from functions import AnalyticFunction
from utils import *

arg_support_enabled = True

def running_mean(x: np.ndarray, N: int) -> np.ndarray:
    """
    Compute running average.

    arguments:
    x -- NumPy array
    N -- how many items to average
    """
    cumsum = np.cumsum(np.insert(x, 0, 0))
    return (cumsum[N:] - cumsum[:-N]) / N

def soft_cast_int(n):
    """
    Convert to int, if possible.

    If it is empty, returns None.
    If it is not numeric, it is left unchanged.
    """
    if n == None or n == '':
        return None
    try:
        return int(n)
    except ValueError:
        return n

def vprint(verbose: bool, string: str):
    """
    Print string if verbose.

    Prints string if verbose is a True value
    """
    if verbose:
        print(string)

    # I don't recall what these are for.
    # --df, 2019-01-29
    def _gplearn_add_(x, y):
        return x + y

    def _gplearn_sub_(x, y):
        return x - y

    def _gplearn_mul_(x, y):
        return x * y

    def _gplearn_div_(x, y):
        if np.abs(y) > 0.001:
            return x / y
        return 1.

def gplearn_to_function(function_str: str):
    """
    Convert gplearn-style function string to Python function.

    Takes a function string like "mul(add(X0, X1), X2)" and returns
    a Python function implementing the specified behaviour,
    e.g. "lambda x, y, z: (x + y) * z".

    Supported functions:
    add  --  x + y
    sub  --  x - y
    mul  --  x * y
    div  --  x / y if |y| > 0.001, otherwise 1
    sqrt --  sqrt(|x|)
    log  --  log(|x|) if |x| > 0.001, otherwise 0
    inv  --  1 / x if |x| > 0.001, otherwise 0
    """
    eval_globals = {
        'add' : lambda x, y : x + y,
        'sub' : lambda x, y : x - y,
        'mul' : lambda x, y : x * y,
        'div' : lambda x, y : np.divide(x, y) if np.abs(y) > 0.001 else 1.,
        'sqrt': lambda x : np.sqrt(np.abs(x)),
        'log' : lambda x : np.log(np.abs(x)) if np.abs(x) > 0.001 else 0.,
        'inv' : lambda x : 1. / x if np.abs(x) > 0.001 else 0.,
    }

    last_arg_index = 0
    for i in range(0, 100):
        if function_str.find('X{:d}'.format(i)) >= 0:
            last_arg_index = i

    arg_list = []
    for i in range(0, last_arg_index+1):
        arg_list.append('X{:d}'.format(i))

    eval_str = 'lambda {}, *whatever: {}'.format(','.join(arg_list), function_str)
    print(eval_str)
    return eval(eval_str, eval_globals)

def _arg_name(arg_index: int) -> str:
    return '~arg{:02}'.format(arg_index)

def append_if_set(aggregate: dict, data: dict, key: str):
    """Append data[key] to aggregate if key in data."""
    if key in data:
        aggregate.append(data[key])

def mean_or_none(arr):
    """Compute mean of NumPy array arr, return -1 if empty."""
    if len(arr):
        return np.mean(arr)
    return -1

def aggregate_measures(aggregate: float, actual: list) -> dict:
    """
    Calculate error measures for model value on data list.

    arguments:
    aggregate -- model value (float or int)
    actual -- real-world / reference values (list of float or int)

    return value:
    See regression_measures
    """
    aggregate_array = np.array([aggregate] * len(actual))
    return regression_measures(aggregate_array, np.array(actual))

def regression_measures(predicted: np.ndarray, actual: np.ndarray):
    """
    Calculate error measures by comparing model values to reference values.

    arguments:
    predicted -- model values (np.ndarray)
    actual -- real-world / reference values (np.ndarray)

    Returns a dict containing the following measures:
    mae -- Mean Absolute Error
    mape -- Mean Absolute Percentage Error,
            if all items in actual are non-zero (NaN otherwise)
    smape -- Symmetric Mean Absolute Percentage Error,
             if no 0,0-pairs are present in actual and predicted (NaN otherwise)
    msd -- Mean Square Deviation
    rmsd -- Root Mean Square Deviation
    ssr -- Sum of Squared Residuals
    rsq -- R^2 measure, see sklearn.metrics.r2_score
    count -- Number of values
    """
    if type(predicted) != np.ndarray:
        raise ValueError('first arg must be ndarray, is {}'.format(type(predicted)))
    if type(actual) != np.ndarray:
        raise ValueError('second arg must be ndarray, is {}'.format(type(actual)))
    deviations = predicted - actual
    mean = np.mean(actual)
    if len(deviations) == 0:
        return {}
    measures = {
        'mae' : np.mean(np.abs(deviations), dtype=np.float64),
        'msd' : np.mean(deviations**2, dtype=np.float64),
        'rmsd' : np.sqrt(np.mean(deviations**2), dtype=np.float64),
        'ssr' : np.sum(deviations**2, dtype=np.float64),
        'rsq' : r2_score(actual, predicted),
        'count' : len(actual),
    }

    #rsq_quotient = np.sum((actual - mean)**2, dtype=np.float64) * np.sum((predicted - mean)**2, dtype=np.float64)

    if np.all(actual != 0):
        measures['mape'] = np.mean(np.abs(deviations / actual)) * 100 # bad measure
    else:
        measures['mape'] = np.nan
    if np.all(np.abs(predicted) + np.abs(actual) != 0):
        measures['smape'] = np.mean(np.abs(deviations) / (( np.abs(predicted) + np.abs(actual)) / 2 )) * 100
    else:
        measures['smape'] = np.nan
    #if np.all(rsq_quotient != 0):
    #    measures['rsq'] = (np.sum((actual - mean) * (predicted - mean), dtype=np.float64)**2) / rsq_quotient

    return measures

class KeysightCSV:
    """Simple loader for Keysight CSV data, as exported by the windows software."""

    def __init__(self):
        """Create a new KeysightCSV object."""
        pass

    def load_data(self, filename: str):
        """
        Load log data from filename, return timestamps and currents.

        Returns two one-dimensional NumPy arrays: timestamps and corresponding currents.
        """
        with open(filename) as f:
            for i, l in enumerate(f):
                pass
            timestamps = np.ndarray((i-3), dtype=float)
            currents = np.ndarray((i-3), dtype=float)
        # basically seek back to start
        with open(filename) as f:
            for _ in range(4):
                next(f)
            reader = csv.reader(f, delimiter=',')
            for i, row in enumerate(reader):
                timestamps[i] = float(row[0])
                currents[i] = float(row[2]) * -1
        return timestamps, currents

def by_name_to_by_param(by_name: dict):
    """
    Convert aggregation by name to aggregation by name and parameter values.
    """
    by_param = dict()
    for name in by_name.keys():
        for i, parameters in enumerate(by_name[name]['param']):
            param_key = (name, tuple(parameters))
            if param_key not in by_param:
                by_param[param_key] = dict()
                for key in by_name[name].keys():
                    by_param[param_key][key] = list()
                by_param[param_key]['attributes'] = by_name[name]['attributes']
                # special case for PTA models
                if 'isa' in by_name[name]:
                    by_param[param_key]['isa'] = by_name[name]['isa']
            for attribute in by_name[name]['attributes']:
                by_param[param_key][attribute].append(by_name[name][attribute][i])
    return by_param


def _xv_partitions_kfold(length, num_slices):
    pairs = []
    indexes = np.arange(length)
    for i in range(0, num_slices):
        training = np.delete(indexes, slice(i, None, num_slices))
        validation = indexes[i::num_slices]
        pairs.append((training, validation))
    return pairs

def _xv_partition_montecarlo(length):
    shuffled = np.random.permutation(np.arange(length))
    border = int(length * float(2) / 3)
    training = shuffled[:border]
    validation = shuffled[border:]
    return (training, validation)

class CrossValidator:
    """
    Cross-Validation helper for model generation.

    Given a set of measurements and a model class, it will partition the
    data into training and validation sets, train the model on the training
    set, and assess its quality on the validation set. This is repeated
    several times depending on cross-validation algorithm and configuration.
    Reports the mean model error over all cross-validation runs.
    """

    def __init__(self, model_class, by_name, parameters, arg_count):
        """
        Create a new CrossValidator object.

        Does not perform cross-validation yet.

        arguments:
        model_class -- model class/type used for model synthesis,
            e.g. PTAModel or AnalyticModel. model_class must have a
            constructor accepting (by_name, parameters, arg_count, verbose = False)
            and provide an assess method.
        by_name -- measurements aggregated by state/transition/function/... name.
            Layout: by_name[name][attribute] = list of data. Additionally,
            by_name[name]['attributes'] must be set to the list of attributes,
            e.g. ['power'] or ['duration', 'energy'].
        """
        self.model_class = model_class
        self.by_name = by_name
        self.names = sorted(by_name.keys())
        self.parameters = sorted(parameters)
        self.arg_count = arg_count

    def montecarlo(self, model_getter, count = 200):
        """
        Perform Monte Carlo cross-validation and return average model quality.

        The by_name data is randomly divided into 2/3 training and 1/3
        validation. After creating a model for the training set, the
        model type returned by model_getter is evaluated on the validation set.
        This is repeated count times (defaulting to 200); the average of all
        measures is returned to the user.

        arguments:
        model_getter -- function with signature (model_object) -> model,
            e.g. lambda m: m.get_fitted()[0] to evaluate the parameter-aware
            model with automatic parameter detection.
        count -- number of validation runs to perform, defaults to 200

        return value:
        dict of model quality measures.
        {
            'by_name' : {
                for each name: {
                    for each attribute: {
                        'mae' : mean of all mean absolute errors
                        'mae_list' : list of the individual MAE values encountered during cross-validation
                        'smape' : mean of all symmetric mean absolute percentage errors
                        'smape_list' : list of the individual SMAPE values encountered during cross-validation
                    }
                }
            }
        }
        """
        ret = {
            'by_name' : dict()
        }

        for name in self.names:
            ret['by_name'][name] = dict()
            for attribute in self.by_name[name]['attributes']:
                ret['by_name'][name][attribute] = {
                    'mae_list': list(),
                    'smape_list': list()
                }

        for i in range(count):
            res = self._single_montecarlo(model_getter)
            for name in self.names:
                for attribute in self.by_name[name]['attributes']:
                    ret['by_name'][name][attribute]['mae_list'].append(res['by_name'][name][attribute]['mae'])
                    ret['by_name'][name][attribute]['smape_list'].append(res['by_name'][name][attribute]['smape'])

        for name in self.names:
            for attribute in self.by_name[name]['attributes']:
                ret['by_name'][name][attribute]['mae'] = np.mean(ret['by_name'][name][attribute]['mae_list'])
                ret['by_name'][name][attribute]['smape'] = np.mean(ret['by_name'][name][attribute]['smape_list'])

        return ret

    def _single_montecarlo(self, model_getter):
        training = dict()
        validation = dict()
        for name in self.names:
            training[name] = {
                'attributes' : self.by_name[name]['attributes']
            }
            validation[name] = {
                'attributes' : self.by_name[name]['attributes']
            }

            if 'isa' in self.by_name[name]:
                training[name]['isa'] = self.by_name[name]['isa']
                validation[name]['isa'] = self.by_name[name]['isa']

            data_count = len(self.by_name[name]['param'])
            training_subset, validation_subset = _xv_partition_montecarlo(data_count)

            for attribute in self.by_name[name]['attributes']:
                self.by_name[name][attribute] = np.array(self.by_name[name][attribute])
                training[name][attribute] = self.by_name[name][attribute][training_subset]
                validation[name][attribute] = self.by_name[name][attribute][validation_subset]

            # We can't use slice syntax for 'param', which may contain strings and other odd values
            training[name]['param'] = list()
            validation[name]['param'] = list()
            for idx in training_subset:
                training[name]['param'].append(self.by_name[name]['param'][idx])
            for idx in validation_subset:
                validation[name]['param'].append(self.by_name[name]['param'][idx])

        training_data = self.model_class(training, self.parameters, self.arg_count, verbose = False)
        training_model = model_getter(training_data)
        validation_data = self.model_class(validation, self.parameters, self.arg_count, verbose = False)

        return validation_data.assess(training_model)


def _preprocess_measurement(measurement):
    setup = measurement['setup']
    mim = MIMOSA(float(setup['mimosa_voltage']), int(setup['mimosa_shunt']))
    charges, triggers = mim.load_data(measurement['content'])
    trigidx = mim.trigger_edges(triggers)
    triggers = []
    cal_edges = mim.calibration_edges(running_mean(mim.currents_nocal(charges[0:trigidx[0]]), 10))
    calfunc, caldata = mim.calibration_function(charges, cal_edges)
    vcalfunc = np.vectorize(calfunc, otypes=[np.float64])

    processed_data = {
        'fileno' : measurement['fileno'],
        'info' : measurement['info'],
        'triggers' : len(trigidx),
        'first_trig' : trigidx[0] * 10,
        'calibration' : caldata,
        'trace' : mim.analyze_states(charges, trigidx, vcalfunc)
    }

    return processed_data

class ParamStats:

    def __init__(self, by_name, by_param, parameter_names, arg_count, use_corrcoef = False, verbose = False):
        """
        Compute standard deviation and correlation coefficient on parameterized data partitions.

        It is strongly recommended to vary all parameter values evenly.
        For instance, given two parameters, providing only the combinations
        (1, 1), (5, 1), (7, 1,) (10, 1), (1, 2), (1, 6) will lead to bogus results.
        It is better to provide (1, 1), (5, 1), (1, 2), (5, 2), ... (i.e. a cross product of all individual parameter values)

        arguments:
        by_name -- ground truth partitioned by state/transition name.
            by_name[state_or_trans][attribute] must be a list or 1-D numpy array.
            by_name[state_or_trans]['param'] must be a list of parameter values
            corresponding to the ground truth, e.g. [[1, 2, 3], ...] if the
            first ground truth element has the (lexically) first parameter set to 1,
            the second to 2 and the third to 3.
        by_param -- ground truth partitioned by state/transition name and parameters.
            by_name[(state_or_trans, *)][attribute] must be a list or 1-D numpy array.
        parameter_names -- list of parameter names, must have the same order as the parameter
            values in by_param (lexical sorting is recommended).
        arg_count -- dict providing the number of functions args ("local parameters") for each function.
        use_corrcoef -- use correlation coefficient instead of stddev heuristic for parameter detection
        """
        self.stats = dict()
        self.use_corrcoef = use_corrcoef
        # Note: This is deliberately single-threaded. The overhead incurred
        # by multiprocessing is higher than the speed gained by parallel
        # computation of statistics measures.
        for state_or_tran in by_name.keys():
            self.stats[state_or_tran] = dict()
            for attribute in by_name[state_or_tran]['attributes']:
                self.stats[state_or_tran][attribute] = compute_param_statistics(by_name, by_param, parameter_names, arg_count, state_or_tran, attribute, verbose = verbose)

    def _generic_param_independence_ratio(self, state_or_trans, attribute):
        """
        Return the heuristic ratio of parameter independence for state_or_trans and attribute.

        This is not supported if the correlation coefficient is used.
        A value close to 1 means no influence, a value close to 0 means high probability of influence.
        """
        statistics = self.stats[state_or_trans][attribute]
        if self.use_corrcoef:
            # not supported
            raise ValueError
        if statistics['std_static'] == 0:
            return 0
        return statistics['std_param_lut'] / statistics['std_static']

    def generic_param_dependence_ratio(self, state_or_trans, attribute):
        """
        Return the heuristic ratio of parameter dependence for state_or_trans and attribute.

        This is not supported if the correlation coefficient is used.
        A value close to 0 means no influence, a value close to 1 means high probability of influence.
        """
        return 1 - self._generic_param_independence_ratio(state_or_trans, attribute)

    def _param_independence_ratio(self, state_or_trans, attribute, param):
        """
        Return the heuristic ratio of parameter independence for state_or_trans, attribute, and param.

        A value close to 1 means no influence, a value close to 0 means high probability of influence.
        """
        statistics = self.stats[state_or_trans][attribute]
        if self.use_corrcoef:
            return 1 - np.abs(statistics['corr_by_param'][param])
        if statistics['std_by_param'][param] == 0:
            if statistics['std_param_lut'] != 0:
                raise RuntimeError("wat")
            # In general, std_param_lut < std_by_param. So, if std_by_param == 0, std_param_lut == 0 follows.
            # This means that the variation of param does not affect the model quality -> no influence, return 1
            return 1
        return statistics['std_param_lut'] / statistics['std_by_param'][param]

    def param_dependence_ratio(self, state_or_trans, attribute, param):
        """
        Return the heuristic ratio of parameter dependence for state_or_trans, attribute, and param.

        A value close to 0 means no influence, a value close to 1 means high probability of influence.
        """
        return 1 - self._param_independence_ratio(state_or_trans, attribute, param)

    def _arg_independence_ratio(self, state_or_trans, attribute, arg_index):
        statistics = self.stats[state_or_trans][attribute]
        if self.use_corrcoef:
            return 1 - np.abs(statistics['corr_by_arg'][arg_index])
        if statistics['std_by_arg'][arg_index] == 0:
            if statistics['std_arg_lut'] != 0:
                raise RuntimeError("wat")
            # In general, std_arg_lut < std_by_arg. So, if std_by_arg == 0, std_arg_lut == 0 follows.
            # This means that the variation of arg does not affect the model quality -> no influence, return 1
            return 1
        return statistics['std_param_lut'] / statistics['std_by_arg'][arg_index]

    def arg_dependence_ratio(self, state_or_trans, attribute, arg_index):
        return 1 - self._arg_independence_ratio(state_or_trans, attribute, arg_index)

    # This heuristic is very similar to the "function is not much better than
    # median" checks in get_fitted. So far, doing it here as well is mostly
    # a performance and not an algorithm quality decision.
    # --df, 2018-04-18
    def depends_on_param(self, state_or_trans, attribute, param):
        """Return whether attribute of state_or_trans depens on param."""
        if self.use_corrcoef:
            return self.param_dependence_ratio(state_or_trans, attribute, param) > 0.1
        else:
            return self.param_dependence_ratio(state_or_trans, attribute, param) > 0.5

    # See notes on depends_on_param
    def depends_on_arg(self, state_or_trans, attribute, arg_index):
        """Return whether attribute of state_or_trans depens on arg_index."""
        if self.use_corrcoef:
            return self.arg_dependence_ratio(state_or_trans, attribute, arg_index) > 0.1
        else:
            return self.arg_dependence_ratio(state_or_trans, attribute, arg_index) > 0.5

class RawData:
    """
    Loader for hardware model traces measured with MIMOSA.

    Expects a specific trace format and UART log output (as produced by the
    dfatool benchmark generator). Loads data, prunes bogus measurements, and
    provides preprocessed data suitable for PTAModel.
    """

    def __init__(self, filenames):
        """
        Create a new RawData object.

        Each filename element corresponds to a measurement run.
        """
        self.filenames = filenames.copy()
        self.traces_by_fileno = []
        self.setup_by_fileno = []
        self.version = 0
        self.preprocessed = False
        self._parameter_names = None

    def _state_is_too_short(self, online, offline, state_duration, next_transition):
        # We cannot control when an interrupt causes a state to be left
        if next_transition['plan']['level'] == 'epilogue':
            return False

        # Note: state_duration is stored as ms, not us
        return offline['us'] < state_duration * 500

    def _state_is_too_long(self, online, offline, state_duration, prev_transition):
        # If the previous state was left by an interrupt, we may have some
        # waiting time left over. So it's okay if the current state is longer
        # than expected.
        if prev_transition['plan']['level'] == 'epilogue':
            return False
        # state_duration is stored as ms, not us
        return offline['us'] > state_duration * 1500

    def _measurement_is_valid(self, processed_data):
        setup = self.setup_by_fileno[processed_data['fileno']]
        traces = self.traces_by_fileno[processed_data['fileno']]
        state_duration = setup['state_duration']
        # Check trigger count
        sched_trigger_count = 0
        for run in traces:
            sched_trigger_count += len(run['trace'])
        if sched_trigger_count != processed_data['triggers']:
            processed_data['error'] = 'got {got:d} trigger edges, expected {exp:d}'.format(
                    got = processed_data['triggers'],
                    exp = sched_trigger_count
            )
            return False
        # Check state durations. Very short or long states can indicate a
        # missed trigger signal which wasn't detected due to duplicate
        # triggers elsewhere
        online_datapoints = []
        for run_idx, run in enumerate(traces):
            for trace_part_idx in range(len(run['trace'])):
                online_datapoints.append((run_idx, trace_part_idx))
        for offline_idx, online_ref in enumerate(online_datapoints):
            online_run_idx, online_trace_part_idx = online_ref
            offline_trace_part = processed_data['trace'][offline_idx]
            online_trace_part = traces[online_run_idx]['trace'][online_trace_part_idx]

            if self._parameter_names == None:
                self._parameter_names = sorted(online_trace_part['parameter'].keys())

            if sorted(online_trace_part['parameter'].keys()) != self._parameter_names:
                processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) has inconsistent paramete set: should be {param_want:s}, is {param_is:s}'.format(
                    off_idx = offline_idx, on_idx = online_run_idx,
                    on_sub = online_trace_part_idx,
                    on_name = online_trace_part['name'],
                    param_want = self._parameter_names,
                    param_is = sorted(online_trace_part['parameter'].keys())
                )

            if online_trace_part['isa'] != offline_trace_part['isa']:
                processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) claims to be {off_isa:s}, but should be {on_isa:s}'.format(
                        off_idx = offline_idx, on_idx = online_run_idx,
                        on_sub = online_trace_part_idx,
                        on_name = online_trace_part['name'],
                        off_isa = offline_trace_part['isa'],
                        on_isa = online_trace_part['isa'])
                return False

            # Clipping in UNINITIALIZED (offline_idx == 0) can happen during
            # calibration and is handled by MIMOSA
            if offline_idx != 0 and offline_trace_part['clip_rate'] != 0:
                processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) was clipping {clip:f}% of the time'.format(
                    off_idx = offline_idx, on_idx = online_run_idx,
                    on_sub = online_trace_part_idx,
                    on_name = online_trace_part['name'],
                    clip = offline_trace_part['clip_rate'] * 100,
                )
                return False


            if online_trace_part['isa'] == 'state' and online_trace_part['name'] != 'UNINITIALIZED':
                online_prev_transition = traces[online_run_idx]['trace'][online_trace_part_idx-1]
                online_next_transition = traces[online_run_idx]['trace'][online_trace_part_idx+1]
                try:
                    if self._state_is_too_short(online_trace_part, offline_trace_part, state_duration, online_next_transition):
                        processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) is too short (duration = {dur:d} us)'.format(
                            off_idx = offline_idx, on_idx = online_run_idx,
                            on_sub = online_trace_part_idx,
                            on_name = online_trace_part['name'],
                            dur = offline_trace_part['us'])
                        return False
                    if self._state_is_too_long(online_trace_part, offline_trace_part, state_duration, online_prev_transition):
                        processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) is too long (duration = {dur:d} us)'.format(
                            off_idx = offline_idx, on_idx = online_run_idx,
                            on_sub = online_trace_part_idx,
                            on_name = online_trace_part['name'],
                            dur = offline_trace_part['us'])
                        return False
                except KeyError:
                    pass
                    # TODO es gibt next_transitions ohne 'plan'
        return True

    def _merge_measurement_into_online_data(self, measurement):
        online_datapoints = []
        traces = self.traces_by_fileno[measurement['fileno']]
        for run_idx, run in enumerate(traces):
            for trace_part_idx in range(len(run['trace'])):
                online_datapoints.append((run_idx, trace_part_idx))
        for offline_idx, online_ref in enumerate(online_datapoints):
            online_run_idx, online_trace_part_idx = online_ref
            offline_trace_part = measurement['trace'][offline_idx]
            online_trace_part = traces[online_run_idx]['trace'][online_trace_part_idx]

            if not 'offline' in online_trace_part:
                online_trace_part['offline'] = [offline_trace_part]
            else:
                online_trace_part['offline'].append(offline_trace_part)

            paramkeys = sorted(online_trace_part['parameter'].keys())
            paramvalue = [soft_cast_int(online_trace_part['parameter'][x]) for x in paramkeys]

            # NB: Unscheduled transitions do not have an 'args' field set.
            # However, they should only be caused by interrupts, and
            # interrupts don't have args anyways.
            if arg_support_enabled and 'args' in online_trace_part:
                paramvalue.extend(map(soft_cast_int, online_trace_part['args']))

            if not 'offline_aggregates' in online_trace_part:
                online_trace_part['offline_attributes'] = ['power', 'duration', 'energy']
                online_trace_part['offline_aggregates'] = {
                    'power' : [],
                    'duration' : [],
                    'power_std' : [],
                    'energy' : [],
                    'paramkeys' : [],
                    'param': [],
                }
                if online_trace_part['isa'] == 'transition':
                    online_trace_part['offline_attributes'].extend(['rel_energy_prev', 'rel_energy_next', 'timeout'])
                    online_trace_part['offline_aggregates']['rel_energy_prev'] = []
                    online_trace_part['offline_aggregates']['rel_energy_next'] = []
                    online_trace_part['offline_aggregates']['timeout'] = []

            # Note: All state/transitions are 20us "too long" due to injected
            # active wait states. These are needed to work around MIMOSA's
            # relatively low sample rate of 100 kHz (10us) and removed here.
            online_trace_part['offline_aggregates']['power'].append(
                offline_trace_part['uW_mean'])
            online_trace_part['offline_aggregates']['duration'].append(
                offline_trace_part['us'] - 20)
            online_trace_part['offline_aggregates']['power_std'].append(
                offline_trace_part['uW_std'])
            online_trace_part['offline_aggregates']['energy'].append(
                offline_trace_part['uW_mean'] * (offline_trace_part['us'] - 20))
            online_trace_part['offline_aggregates']['paramkeys'].append(paramkeys)
            online_trace_part['offline_aggregates']['param'].append(paramvalue)
            if online_trace_part['isa'] == 'transition':
                online_trace_part['offline_aggregates']['rel_energy_prev'].append(
                    offline_trace_part['uW_mean_delta_prev'] * (offline_trace_part['us'] - 20))
                online_trace_part['offline_aggregates']['rel_energy_next'].append(
                    offline_trace_part['uW_mean_delta_next'] * (offline_trace_part['us'] - 20))
                online_trace_part['offline_aggregates']['timeout'].append(
                    offline_trace_part['timeout'])

    def _concatenate_analyzed_traces(self):
        self.traces = []
        for trace in self.traces_by_fileno:
            self.traces.extend(trace)
        for i, trace in enumerate(self.traces):
            trace['orig_id'] = trace['id']
            trace['id'] = i

    def get_preprocessed_data(self, verbose = True):
        """
        Return a list of DFA traces annotated with energy, timing, and parameter data.

        Suitable for the PTAModel constructor.
        See PTAModel(...) docstring for format details.
        """
        self.verbose = verbose
        if self.preprocessed:
            return self.traces
        if self.version == 0:
            self._preprocess_0()
        self.preprocessed = True
        return self.traces

    def _preprocess_0(self):
        """Load raw MIMOSA data and turn it into measurements which are ready to be analyzed."""
        mim_files = []
        for i, filename in enumerate(self.filenames):
            with tarfile.open(filename) as tf:
                self.setup_by_fileno.append(json.load(tf.extractfile('setup.json')))
                self.traces_by_fileno.append(json.load(tf.extractfile('src/apps/DriverEval/DriverLog.json')))
                for member in tf.getmembers():
                    _, extension = os.path.splitext(member.name)
                    if extension == '.mim':
                        mim_files.append({
                            'content' : tf.extractfile(member).read(),
                            'fileno' : i,
                            'info' : member,
                            'setup' : self.setup_by_fileno[i],
                            'traces' : self.traces_by_fileno[i],
                        })
        with Pool() as pool:
            measurements = pool.map(_preprocess_measurement, mim_files)

        num_valid = 0
        for measurement in measurements:
            if self._measurement_is_valid(measurement):
                self._merge_measurement_into_online_data(measurement)
                num_valid += 1
            else:
                vprint(self.verbose, '[W] Skipping {ar:s}/{m:s}: {e:s}'.format(
                    ar = self.filenames[measurement['fileno']],
                    m = measurement['info'].name,
                    e = measurement['error']))
        vprint(self.verbose, '[I] {num_valid:d}/{num_total:d} measurements are valid'.format(
            num_valid = num_valid,
            num_total = len(measurements)))
        self._concatenate_analyzed_traces()
        self.preprocessing_stats = {
            'num_runs' : len(measurements),
            'num_valid' : num_valid
        }

class ParallelParamFit:
    """
    Fit a set of functions on parameterized measurements.

    One parameter is variale, all others are fixed. Reports the best-fitting
    function type for each parameter.
    """

    def __init__(self, by_param):
        """Create a new ParallelParamFit object."""
        self.fit_queue = []
        self.by_param = by_param

    def enqueue(self, state_or_tran, attribute, param_index, param_name, safe_functions_enabled = False):
        """
        Add state_or_tran/attribute/param_name to fit queue.

        This causes fit() to compute the best-fitting function for this model part.
        """
        self.fit_queue.append({
            'key' : [state_or_tran, attribute, param_name],
            'args' : [self.by_param, state_or_tran, attribute, param_index, safe_functions_enabled]
        })

    def fit(self):
        """
        Fit functions on previously enqueue data.

        Fitting is one in parallel with one process per core.

        Results can be accessed using the public ParallelParamFit.results object.
        """
        with Pool() as pool:
            self.results = pool.map(_try_fits_parallel, self.fit_queue)

def _try_fits_parallel(arg):
    return {
        'key' : arg['key'],
        'result' : _try_fits(*arg['args'])
    }


def _try_fits(by_param, state_or_tran, model_attribute, param_index, safe_functions_enabled = False):
    functions = analytic.functions(safe_functions_enabled = safe_functions_enabled)


    for param_key in filter(lambda x: x[0] == state_or_tran, by_param.keys()):
        # We might remove elements from 'functions' while iterating over
        # its keys. A generator will not allow this, so we need to
        # convert to a list.
        function_names = list(functions.keys())
        for function_name in function_names:
            function_object = functions[function_name]
            if is_numeric(param_key[1][param_index]) and not function_object.is_valid(param_key[1][param_index]):
                functions.pop(function_name, None)

    raw_results = {}
    ref_results = {
        'mean' : [],
        'median' : []
    }
    results = {}

    for param_key in filter(lambda x: x[0] == state_or_tran, by_param.keys()):
        X = []
        Y = []
        num_valid = 0
        num_total = 0
        for k, v in by_param.items():
            if param_slice_eq(k, param_key, param_index):
                num_total += 1
                if is_numeric(k[1][param_index]):
                    num_valid += 1
                    X.extend([float(k[1][param_index])] * len(v[model_attribute]))
                    Y.extend(v[model_attribute])

        if num_valid > 2:
            X = np.array(X)
            Y = np.array(Y)
            for function_name, param_function in functions.items():
                raw_results[function_name] = {}
                error_function = param_function.error_function
                res = optimize.least_squares(error_function, [0, 1], args=(X, Y), xtol=2e-15)
                measures = regression_measures(param_function.eval(res.x, X), Y)
                for measure, error_rate in measures.items():
                    if not measure in raw_results[function_name]:
                        raw_results[function_name][measure] = []
                    raw_results[function_name][measure].append(error_rate)
                #print(function_name, res, measures)
            mean_measures = aggregate_measures(np.mean(Y), Y)
            ref_results['mean'].append(mean_measures['rmsd'])
            median_measures = aggregate_measures(np.median(Y), Y)
            ref_results['median'].append(median_measures['rmsd'])

    if not len(ref_results['mean']):
        # Insufficient data for fitting
        return {
            'best' : None,
            'best_rmsd' : np.inf,
            'results' : results,
        }

    best_fit_val = np.inf
    best_fit_name = None
    for function_name, result in raw_results.items():
        if len(result) > 0:
            results[function_name] = {}
            for measure in result.keys():
                results[function_name][measure] = np.mean(result[measure])
            rmsd = results[function_name]['rmsd']
            if rmsd < best_fit_val:
                best_fit_val = rmsd
                best_fit_name = function_name

    return {
        'best' : best_fit_name,
        'best_rmsd' : best_fit_val,
        'mean_rmsd' : np.mean(ref_results['mean']),
        'median_rmsd' : np.mean(ref_results['median']),
        'results' : results
    }

class AnalyticModel:
    u"""
    Parameter-aware analytic energy/data size/... model.

    Supports both static and parameter-based model attributes, and automatic detection of parameter-dependence.

    The model heavily relies on two internal data structures:
    PTAModel.by_name and PTAModel.by_param.

    These provide measurements aggregated by (function/state/...) name
    and (for by_param) parameter values. Layout:
    dictionary with one key per name ('send', 'TX', ...) or
    one key per name and parameter combination
    (('send', (1, 2)), ('send', (2, 3)), ('TX', (1, 2)), ('TX', (2, 3)), ...).

    Parameter values must be ordered corresponding to the lexically sorted parameter names.

    Each element is in turn a dict with the following elements:
    - param: list of parameter values in each measurement (-> list of lists)
    - attributes: list of keys that should be analyzed,
        e.g. ['power', 'duration']
    - for each attribute mentioned in 'attributes': A list with measurements.
      All list except for 'attributes' must have the same length.

    For example:
    parameters = ['foo_count', 'irrelevant']
    by_name = {
        'foo' : [1, 1, 2],
        'bar' : [5, 6, 7],
        'attributes' : ['foo', 'bar'],
        'param' : [[1, 0], [1, 0], [2, 0]]
    }

    methods:
    get_static -- return static (parameter-unaware) model.
    get_param_lut -- return parameter-aware look-up-table model. Cannot model parameter combinations not present in by_param.
    get_fitted -- return parameter-aware model using fitted functions for behaviour prediction.

    variables:
    names -- function/state/... names (i.e., the keys of by_name)
    parameters -- parameter names
    stats -- ParamStats object providing parameter-dependency statistics for each name and attribute
    assess -- calculate model quality
    """

    def __init__(self, by_name, parameters, verbose = True):
        """Create a new AnalyticModel and compute parameter statistics."""
        self.cache = dict()
        self.by_name = by_name
        self.by_param = by_name_to_by_param(by_name)
        self.names = sorted(by_name.keys())
        self.parameters = sorted(parameters)
        self.verbose = verbose

        self.stats = ParamStats(self.by_name, self.by_param, self.parameters, {}, verbose = verbose)

    def _fit(self):
        paramfit = ParallelParamFit(self.by_param)

        for name in self.by_name.keys():
            for attribute in self.by_name[fname]['attributes']:
                for param_index, param in enumerate(self.parameters):
                    ratio = self.stats.param_dependence_ratio(fname, attribute, param)
                    if self.stats.depends_on_param(fname, attribute, param):
                        paramfit.enqueue(fname, attribute, param_index, param, False)

        paramfit.fit()

        for name in self.by_name.keys():
            for attribute in self.by_name[fname]['attributes']:
                fit_result = {}
                for result in paramfit.results:
                    if result['key'][0] == name and result['key'][1] == attribute and result['result']['best'] != None:
                        fit_result[result['key'][2]] = result['result']
                if len(fit_result.keys()):
                    x = analytic.function_powerset(fit_result, parameters)
                    x.fit(by_param, fname, attribute)

    def _get_model_from_dict(self, model_dict, model_function):
        model = {}
        for name, elem in model_dict.items():
            model[name] = {}
            for key in elem['attributes']:
                try:
                    model[name][key] = model_function(elem[key])
                except RuntimeWarning:
                    vprint(self.verbose, '[W] Got no data for {} {}'.format(name, key))
                except FloatingPointError as fpe:
                    vprint(self.verbose, '[W] Got no data for {} {}: {}'.format(name, key, fpe))
        return model

    def get_static(self):
        """
        Get static model function: name, attribute -> model value.

        Uses the median of by_name for modeling.
        """
        static_model = self._get_model_from_dict(self.by_name, np.median)

        def static_median_getter(name, key, **kwargs):
            return static_model[name][key]

        return static_median_getter

    def get_static_using_mean(self):
        """
        Get static model function: name, attribute -> model value.

        Uses the mean of by_name for modeling.
        """
        static_model = self._get_model_from_dict(self.by_name, np.mean)

        def static_mean_getter(name, key, **kwargs):
            return static_model[name][key]

        return static_mean_getter

    def get_param_lut(self, fallback = False):
        """
        Get parameter-look-up-table model function: name, attribute, parameter values -> model value.

        The function can only give model values for parameter combinations
        present in by_param. By default, it raises KeyError for other values.

        arguments:
        fallback -- Fall back to the (non-parameter-aware) static model when encountering unknown parameter values
        """
        static_model = self._get_model_from_dict(self.by_name, np.median)
        lut_model = self._get_model_from_dict(self.by_param, np.median)

        def lut_median_getter(name, key, param, arg = [], **kwargs):
            param.extend(map(soft_cast_int, arg))
            try:
                return lut_model[(name, tuple(param))][key]
            except KeyError:
                if fallback:
                    return static_model[name][key]
                raise

        return lut_median_getter

    def get_fitted(self, safe_functions_enabled = False):
        """
        Get paramete-aware model function and model information function.

        Returns two functions:
        model_function(name, attribute, param=parameter values) -> model value.
        model_info(name, attribute) -> {'fit_result' : ..., 'function' : ... } or None
        """
        if 'fitted_model_getter' in self.cache and 'fitted_info_getter' in self.cache:
            return self.cache['fitted_model_getter'], self.cache['fitted_info_getter']

        static_model = self._get_model_from_dict(self.by_name, np.median)
        param_model = dict([[name, {}] for name in self.by_name.keys()])
        paramfit = ParallelParamFit(self.by_param)

        for name in self.by_name.keys():
            for attribute in self.by_name[name]['attributes']:
                for param_index, param in enumerate(self.parameters):
                    ratio = self.stats.param_dependence_ratio(name, attribute, param)
                    if self.stats.depends_on_param(name, attribute, param):
                        paramfit.enqueue(name, attribute, param_index, param, False)

        paramfit.fit()

        for name in self.by_name.keys():
            for attribute in self.by_name[name]['attributes']:
                fit_result = {}
                for result in paramfit.results:
                    if result['key'][0] == name and result['key'][1] == attribute and result['result']['best'] != None:
                        this_result = result['result']
                        if this_result['best_rmsd'] >= min(this_result['mean_rmsd'], this_result['median_rmsd']):
                            vprint(self.verbose, '[I] Not modeling {} {} as function of {}: best ({:.0f}) is worse than ref ({:.0f}, {:.0f})'.format(
                                name, attribute, result['key'][2], this_result['best_rmsd'],
                                this_result['mean_rmsd'], this_result['median_rmsd']))
                        # See notes on depends_on_param
                        elif this_result['best_rmsd'] >= 0.8 * min(this_result['mean_rmsd'], this_result['median_rmsd']):
                            vprint(self.verbose, '[I] Not modeling {} {} as function of {}: best ({:.0f}) is not much better than ({:.0f}, {:.0f})'.format(
                                name, attribute, result['key'][2], this_result['best_rmsd'],
                                this_result['mean_rmsd'], this_result['median_rmsd']))
                        else:
                            fit_result[result['key'][2]] = this_result

                if len(fit_result.keys()):
                    x = analytic.function_powerset(fit_result, self.parameters)
                    x.fit(self.by_param, name, attribute)

                    if x.fit_success:
                        param_model[name][attribute] = {
                            'fit_result': fit_result,
                            'function' : x
                        }

        def model_getter(name, key, **kwargs):
            if key in param_model[name]:
                param_list = kwargs['param']
                param_function = param_model[name][key]['function']
                if param_function.is_predictable(param_list):
                    return param_function.eval(param_list)
            return static_model[name][key]

        def info_getter(name, key):
            if key in param_model[name]:
                return param_model[name][key]
            return None

        self.cache['fitted_model_getter'] = model_getter
        self.cache['fitted_info_getter'] = info_getter

        return model_getter, info_getter

    def assess(self, model_function):
        """
        Calculate MAE, SMAPE, etc. of model_function for each by_name entry.

        state/transition/... name and parameter values are fed into model_function.
        The by_name entries of this AnalyticModel are used as ground truth and
        compared with the values predicted by model_function.

        For proper model assessments, the data used to generate model_function
        and the data fed into this AnalyticModel instance must be mutually
        exclusive (e.g. by performing cross validation). Otherwise,
        overfitting cannot be detected.
        """
        detailed_results = {}
        for name, elem in sorted(self.by_name.items()):
            detailed_results[name] = {}
            for attribute in elem['attributes']:
                predicted_data = np.array(list(map(lambda i: model_function(name, attribute, param=elem['param'][i]), range(len(elem[attribute])))))
                measures = regression_measures(predicted_data, elem[attribute])
                detailed_results[name][attribute] = measures

        return {
            'by_name' : detailed_results,
        }


def _add_trace_data_to_aggregate(aggregate, key, element):
    # Only cares about element['isa'], element['offline_aggregates'], and
    # element['plan']['level']
    if not key in aggregate:
        aggregate[key] = {
            'isa' : element['isa']
        }
        for datakey in element['offline_aggregates'].keys():
            aggregate[key][datakey] = []
        if element['isa'] == 'state':
            aggregate[key]['attributes'] = ['power']
        else:
            # TODO do not hardcode values
            aggregate[key]['attributes'] = ['duration', 'energy', 'rel_energy_prev', 'rel_energy_next']
            if element['plan']['level'] == 'epilogue':
                aggregate[key]['attributes'].insert(0, 'timeout')
    for datakey, dataval in element['offline_aggregates'].items():
        aggregate[key][datakey].extend(dataval)

def pta_trace_to_aggregate(traces, ignore_trace_indexes = []):
    u"""
    Convert preprocessed DFA traces from peripherals/drivers to by_name aggregate for PTAModel.

    arguments:
    traces -- [ ... Liste von einzelnen Läufen (d.h. eine Zustands- und Transitionsfolge UNINITIALIZED -> foo -> FOO -> bar -> BAR -> ...)
        Jeder Lauf:
        - id: int Nummer des Laufs, beginnend bei 1
        - trace: [ ... Liste von Zuständen und Transitionen
            Jeweils:
            - name: str Name
            - isa: str state // transition
            - parameter: { ... globaler Parameter: aktueller wert. null falls noch nicht eingestellt }
            - offline_aggregates:
                - power: [float(uW)] Mittlere Leistung während Zustand/Transitions
                - power_std: [float(uW^2)] Standardabweichung der Leistung
                - duration: [int(us)] Dauer
                - energy: [float(pJ)] Energieaufnahme des Zustands / der Transition
                - clip_rate: [float(0..1)] Clipping
                - paramkeys: [[str]] Name der berücksichtigten Parameter
                - param: [int // str] Parameterwerte. Quasi-Duplikat von 'parameter' oben
                Falls isa == 'transition':
                - timeout: [int(us)] Dauer des vorherigen Zustands
                - rel_energy_prev: [int(pJ)]
                - rel_energy_next: [int(pJ)]
        ]
    ]
    ignore_trace_indexes -- list of trace indexes. The corresponding taces will be ignored.

    returns a tuple of three elements:
    by_name -- measurements aggregated by state/transition name, annotated with parameter values
    parameter_names -- list of parameter names
    arg_count -- dict mapping transition names to the number of arguments of their corresponding driver function

    by_name layout:
    Dictionary with one key per state/transition ('send', 'TX', ...).
    Each element is in turn a dict with the following elements:
    - isa: 'state' or 'transition'
    - power: list of mean power measurements in µW
    - duration: list of durations in µs
    - power_std: list of stddev of power per state/transition
    - energy: consumed energy (power*duration) in pJ
    - paramkeys: list of parameter names in each measurement (-> list of lists)
    - param: list of parameter values in each measurement (-> list of lists)
    - attributes: list of keys that should be analyzed,
        e.g. ['power', 'duration']
    additionally, only if isa == 'transition':
    - timeout: list of duration of previous state in µs
    - rel_energy_prev: transition energy relative to previous state mean power in pJ
    - rel_energy_next: transition energy relative to next state mean power in pJ
    """
    arg_count = dict()
    by_name = dict()
    parameter_names = sorted(traces[0]['trace'][0]['parameter'].keys())
    for run in traces:
        if run['id'] not in ignore_trace_indexes:
            for elem in run['trace']:
                if elem['isa'] == 'transition' and not elem['name'] in arg_count and 'args' in elem:
                    arg_count[elem['name']] = len(elem['args'])
                if elem['name'] != 'UNINITIALIZED':
                    _add_trace_data_to_aggregate(by_name, elem['name'], elem)
    return by_name, parameter_names, arg_count


class PTAModel:
    u"""
    Parameter-aware PTA-based energy model.

    Supports both static and parameter-based model attributes, and automatic detection of parameter-dependence.

    The model heavily relies on two internal data structures:
    PTAModel.by_name and PTAModel.by_param.

    These provide measurements aggregated by state/transition name
    and (in case of by_para) parameter values. Layout:
    dictionary with one key per state/transition ('send', 'TX', ...) or
    one key per state/transition and parameter combination
    (('send', (1, 2)), ('send', (2, 3)), ('TX', (1, 2)), ('TX', (2, 3)), ...).
    For by_param, parameter values are ordered corresponding to the lexically sorted parameter names.

    Each element is in turn a dict with the following elements:
    - isa: 'state' or 'transition'
    - power: list of mean power measurements in µW
    - duration: list of durations in µs
    - power_std: list of stddev of power per state/transition
    - energy: consumed energy (power*duration) in pJ
    - paramkeys: list of parameter names in each measurement (-> list of lists)
    - param: list of parameter values in each measurement (-> list of lists)
    - attributes: list of keys that should be analyzed,
        e.g. ['power', 'duration']
    additionally, only if isa == 'transition':
    - timeout: list of duration of previous state in µs
    - rel_energy_prev: transition energy relative to previous state mean power in pJ
    - rel_energy_next: transition energy relative to next state mean power in pJ
    """

    def __init__(self, by_name, parameters, arg_count, traces = [], ignore_trace_indexes = [], discard_outliers = None, function_override = {}, verbose = True, use_corrcoef = False, hwmodel = None):
        """
        Prepare a new PTA energy model.

        Actual model generation is done on-demand by calling the respective functions.

        arguments:
        by_name -- state/transition measurements aggregated by name, as returned by pta_trace_to_aggregate.
        parameters -- list of parameter names, as returned by pta_trace_to_aggregate
        arg_count -- function arguments, as returned by pta_trace_to_aggregate
        traces -- list of preprocessed DFA traces, as returned by RawData.get_preprocessed_data()
        ignore_trace_indexes -- list of trace indexes. The corresponding taces will be ignored.
        discard_outliers -- currently not supported: threshold for outlier detection and removel (float).
            Outlier detection is performed individually for each state/transition in each trace,
            so it only works if the benchmark ran several times.
            Given "data" (a set of measurements of the same thing, e.g. TX duration in the third benchmark trace),
            "m" (the median of all attribute measurements with the same parameters, which may include data from other traces),
            a data point X is considered an outlier if
            | 0.6745 * (X - m) / median(|data - m|) | > discard_outliers .
        function_override -- dict of overrides for automatic parameter function generation.
            If (state or transition name, model attribute) is present in function_override,
            the corresponding text string is the function used for analytic (parameter-aware/fitted)
            modeling of this attribute. It is passed to AnalyticFunction, see
            there for the required format. Note that this happens regardless of
            parameter dependency detection: The provided analytic function will be assigned
            even if it seems like the model attribute is static / parameter-independent.
        verbose -- print informative output, e.g. when removing an outlier
        use_corrcoef -- use correlation coefficient instead of stddev comparison
            to detect whether a model attribute depends on a parameter
        hwmodel -- hardware model suitable for PTA.from_hwmodel
        """
        self.by_name = by_name
        self.by_param = by_name_to_by_param(by_name)
        self._parameter_names = sorted(parameters)
        self._num_args = arg_count
        self._use_corrcoef = use_corrcoef
        self.traces = traces
        self.stats = ParamStats(self.by_name, self.by_param, self._parameter_names, self._num_args, self._use_corrcoef, verbose = verbose)
        self.cache = {}
        np.seterr('raise')
        self._outlier_threshold = discard_outliers
        self.function_override = function_override
        self.verbose = verbose
        self.hwmodel = hwmodel
        self.ignore_trace_indexes = ignore_trace_indexes
        self._aggregate_to_ndarray(self.by_name)

    def distinct_param_values(self, state_or_tran, param_index = None, arg_index = None):
        if param_index != None:
            param_values = map(lambda x: x[param_index], self.by_name[state_or_tran]['param'])
        return sorted(set(param_values))

    def _aggregate_to_ndarray(self, aggregate):
        for elem in aggregate.values():
            for key in elem['attributes']:
                elem[key] = np.array(elem[key])

    # This heuristic is very similar to the "function is not much better than
    # median" checks in get_fitted. So far, doing it here as well is mostly
    # a performance and not an algorithm quality decision.
    # --df, 2018-04-18
    def depends_on_param(self, state_or_trans, key, param):
        return self.stats.depends_on_param(state_or_trans, key, param)

    # See notes on depends_on_param
    def depends_on_arg(self, state_or_trans, key, param):
        return self.stats.depends_on_arg(state_or_trans, key, param)

    def _get_model_from_dict(self, model_dict, model_function):
        model = {}
        for name, elem in model_dict.items():
            model[name] = {}
            for key in elem['attributes']:
                try:
                    model[name][key] = model_function(elem[key])
                except RuntimeWarning:
                    vprint(self.verbose, '[W] Got no data for {} {}'.format(name, key))
                except FloatingPointError as fpe:
                    vprint(self.verbose, '[W] Got no data for {} {}: {}'.format(name, key, fpe))
        return model

    def get_static(self):
        """
        Get static model function: name, attribute -> model value.

        Uses the median of by_name for modeling.
        """
        static_model = self._get_model_from_dict(self.by_name, np.median)

        def static_median_getter(name, key, **kwargs):
            return static_model[name][key]

        return static_median_getter

    def get_static_using_mean(self):
        """
        Get static model function: name, attribute -> model value.

        Uses the mean of by_name for modeling.
        """
        static_model = self._get_model_from_dict(self.by_name, np.mean)

        def static_mean_getter(name, key, **kwargs):
            return static_model[name][key]

        return static_mean_getter

    def get_param_lut(self, fallback = False):
        """
        Get parameter-look-up-table model function: name, attribute, parameter values -> model value.

        The function can only give model values for parameter combinations
        present in by_param. By default, it raises KeyError for other values.

        arguments:
        fallback -- Fall back to the (non-parameter-aware) static model when encountering unknown parameter values
        """
        static_model = self._get_model_from_dict(self.by_name, np.median)
        lut_model = self._get_model_from_dict(self.by_param, np.median)

        def lut_median_getter(name, key, param, arg = [], **kwargs):
            param.extend(map(soft_cast_int, arg))
            try:
                return lut_model[(name, tuple(param))][key]
            except KeyError:
                if fallback:
                    return static_model[name][key]
                raise

        return lut_median_getter

    def get_param_analytic(self):
        static_model = self._get_model_from_dict(self.by_name, np.median)

    def param_index(self, param_name):
        if param_name in self._parameter_names:
            return self._parameter_names.index(param_name)
        return len(self._parameter_names) + int(param_name)

    def param_name(self, param_index):
        if param_index < len(self._parameter_names):
            return self._parameter_names[param_index]
        return str(param_index)

    def get_fitted(self, safe_functions_enabled = False):
        """
        Get paramete-aware model function and model information function.

        Returns two functions:
        model_function(name, attribute, param=parameter values) -> model value.
        model_info(name, attribute) -> {'fit_result' : ..., 'function' : ... } or None
        """
        if 'fitted_model_getter' in self.cache and 'fitted_info_getter' in self.cache:
            return self.cache['fitted_model_getter'], self.cache['fitted_info_getter']

        static_model = self._get_model_from_dict(self.by_name, np.median)
        param_model = dict([[state_or_tran, {}] for state_or_tran in self.by_name.keys()])
        paramfit = ParallelParamFit(self.by_param)
        for state_or_tran in self.by_name.keys():
            param_keys = filter(lambda k: k[0] == state_or_tran, self.by_param.keys())
            param_subdict = dict(map(lambda k: [k, self.by_param[k]], param_keys))
            for model_attribute in self.by_name[state_or_tran]['attributes']:
                fit_results = {}
                for parameter_index, parameter_name in enumerate(self._parameter_names):
                    if self.depends_on_param(state_or_tran, model_attribute, parameter_name):
                        paramfit.enqueue(state_or_tran, model_attribute, parameter_index, parameter_name, safe_functions_enabled)
                if arg_support_enabled and self.by_name[state_or_tran]['isa'] == 'transition':
                    for arg_index in range(self._num_args[state_or_tran]):
                        if self.depends_on_arg(state_or_tran, model_attribute, arg_index):
                            paramfit.enqueue(state_or_tran, model_attribute, len(self._parameter_names) + arg_index, arg_index, safe_functions_enabled)
        paramfit.fit()

        for state_or_tran in self.by_name.keys():
            num_args = 0
            if arg_support_enabled and self.by_name[state_or_tran]['isa'] == 'transition':
                num_args = self._num_args[state_or_tran]
            for model_attribute in self.by_name[state_or_tran]['attributes']:
                fit_results = {}
                for result in paramfit.results:
                    if result['key'][0] == state_or_tran and result['key'][1] == model_attribute:
                        fit_result = result['result']
                        if fit_result['best_rmsd'] >= min(fit_result['mean_rmsd'], fit_result['median_rmsd']):
                            vprint(self.verbose, '[I] Not modeling {} {} as function of {}: best ({:.0f}) is worse than ref ({:.0f}, {:.0f})'.format(
                                state_or_tran, model_attribute, result['key'][2], fit_result['best_rmsd'],
                                fit_result['mean_rmsd'], fit_result['median_rmsd']))
                        # See notes on depends_on_param
                        elif fit_result['best_rmsd'] >= 0.8 * min(fit_result['mean_rmsd'], fit_result['median_rmsd']):
                            vprint(self.verbose, '[I] Not modeling {} {} as function of {}: best ({:.0f}) is not much better than ({:.0f}, {:.0f})'.format(
                                state_or_tran, model_attribute, result['key'][2], fit_result['best_rmsd'],
                                fit_result['mean_rmsd'], fit_result['median_rmsd']))
                        else:
                            fit_results[result['key'][2]] = fit_result

                if (state_or_tran, model_attribute) in self.function_override:
                    function_str = self.function_override[(state_or_tran, model_attribute)]
                    x = AnalyticFunction(function_str, self._parameter_names, num_args)
                    x.fit(self.by_param, state_or_tran, model_attribute)
                    if x.fit_success:
                        param_model[state_or_tran][model_attribute] = {
                            'fit_result': fit_results,
                            'function' : x
                        }
                elif len(fit_results.keys()):
                    x = analytic.function_powerset(fit_results, self._parameter_names, num_args)
                    x.fit(self.by_param, state_or_tran, model_attribute)
                    if x.fit_success:
                        param_model[state_or_tran][model_attribute] = {
                            'fit_result': fit_results,
                            'function' : x
                        }

        def model_getter(name, key, **kwargs):
            if key in param_model[name]:
                param_list = kwargs['param']
                param_function = param_model[name][key]['function']
                if param_function.is_predictable(param_list):
                    return param_function.eval(param_list)
            return static_model[name][key]

        def info_getter(name, key):
            if key in param_model[name]:
                return param_model[name][key]
            return None

        self.cache['fitted_model_getter'] = model_getter
        self.cache['fitted_info_getter'] = info_getter

        return model_getter, info_getter

    def to_json(self):
        static_model = self.get_static()
        _, param_info = self.get_fitted()
        pta = PTA.from_json(self.hwmodel)
        pta.update(static_model, param_info)
        return pta.to_json()

    def states(self):
        return sorted(list(filter(lambda k: self.by_name[k]['isa'] == 'state', self.by_name.keys())))

    def transitions(self):
        return sorted(list(filter(lambda k: self.by_name[k]['isa'] == 'transition', self.by_name.keys())))

    def states_and_transitions(self):
        ret = self.states()
        ret.extend(self.transitions())
        return ret

    def parameters(self):
        return self._parameter_names

    def attributes(self, state_or_trans):
        return self.by_name[state_or_trans]['attributes']

    def assess(self, model_function):
        """
        Calculate MAE, SMAPE, etc. of model_function for each by_name entry.

        state/transition/... name and parameter values are fed into model_function.
        The by_name entries of this PTAModel are used as ground truth and
        compared with the values predicted by model_function.

        If 'traces' was set when creating this object, the model quality is
        also assessed on a per-trace basis.

        For proper model assessments, the data used to generate model_function
        and the data fed into this AnalyticModel instance must be mutually
        exclusive (e.g. by performing cross validation). Otherwise,
        overfitting cannot be detected.
        """
        detailed_results = {}
        model_energy_list = []
        real_energy_list = []
        model_rel_energy_list = []
        model_state_energy_list = []
        model_duration_list = []
        real_duration_list = []
        model_timeout_list = []
        real_timeout_list = []
        for name, elem in sorted(self.by_name.items()):
            detailed_results[name] = {}
            for key in elem['attributes']:
                predicted_data = np.array(list(map(lambda i: model_function(name, key, param=elem['param'][i]), range(len(elem[key])))))
                measures = regression_measures(predicted_data, elem[key])
                detailed_results[name][key] = measures

        for trace in self.traces:
            if trace['id'] not in self.ignore_trace_indexes:
                for rep_id in range(len(trace['trace'][0]['offline'])):
                    model_energy = 0.
                    real_energy = 0.
                    model_rel_energy = 0.
                    model_state_energy = 0.
                    model_duration = 0.
                    real_duration = 0.
                    model_timeout = 0.
                    real_timeout = 0.
                    for i, trace_part in enumerate(trace['trace']):
                        name = trace_part['name']
                        prev_name = trace['trace'][i-1]['name']
                        isa = trace_part['isa']
                        if name != 'UNINITIALIZED':
                            param = trace_part['offline_aggregates']['param'][rep_id]
                            prev_param = trace['trace'][i-1]['offline_aggregates']['param'][rep_id]
                            power = trace_part['offline'][rep_id]['uW_mean']
                            duration = trace_part['offline'][rep_id]['us']
                            prev_duration = trace['trace'][i-1]['offline'][rep_id]['us']
                            real_energy += power * duration
                            if isa == 'state':
                                model_energy += model_function(name, 'power', param=param) * duration
                            else:
                                model_energy += model_function(name, 'energy', param=param)
                                # If i == 1, the previous state was UNINITIALIZED, for which we do not have model data
                                if i == 1:
                                    model_rel_energy += model_function(name, 'energy', param=param)
                                else:
                                    model_rel_energy += model_function(prev_name, 'power', param=prev_param) * (prev_duration + duration)
                                    model_state_energy += model_function(prev_name, 'power', param=prev_param) * (prev_duration + duration)
                                model_rel_energy += model_function(name, 'rel_energy_prev', param=param)
                                real_duration += duration
                                model_duration += model_function(name, 'duration', param=param)
                                if 'plan' in trace_part and trace_part['plan']['level'] == 'epilogue':
                                    real_timeout += trace_part['offline'][rep_id]['timeout']
                                    model_timeout += model_function(name, 'timeout', param=param)
                    real_energy_list.append(real_energy)
                    model_energy_list.append(model_energy)
                    model_rel_energy_list.append(model_rel_energy)
                    model_state_energy_list.append(model_state_energy)
                    real_duration_list.append(real_duration)
                    model_duration_list.append(model_duration)
                    real_timeout_list.append(real_timeout)
                    model_timeout_list.append(model_timeout)

        if len(self.traces):
            return {
                'by_name' : detailed_results,
                'duration_by_trace' : regression_measures(np.array(model_duration_list), np.array(real_duration_list)),
                'energy_by_trace' : regression_measures(np.array(model_energy_list), np.array(real_energy_list)),
                'timeout_by_trace' : regression_measures(np.array(model_timeout_list), np.array(real_timeout_list)),
                'rel_energy_by_trace' : regression_measures(np.array(model_rel_energy_list), np.array(real_energy_list)),
                'state_energy_by_trace' : regression_measures(np.array(model_state_energy_list), np.array(real_energy_list)),
            }
        return {
            'by_name' : detailed_results
        }



class MIMOSA:
    """
    MIMOSA log loader for DFA traces with auto-calibration.

    Expects a MIMOSA log file generated via dfatool and a dfatool-generated
    benchmark: There is an automatic calibration step at the start and the
    trigger pin is high iff a transition is active. The resulting data
    is a list of state/transition/state/transition/... measurements.
    """

    def __init__(self, voltage, shunt, verbose = True):
        """
        Initialize MIMOSA loader for a specific voltage and shunt setting.

        arguments:
        voltage -- MIMOSA voltage used for measurements
        shunt -- Shunt value in Ohms
        verbose -- notify about invalid data and the likes
        """
        self.voltage = voltage
        self.shunt = shunt
        self.verbose = verbose
        self.r1 = 984 # "1k"
        self.r2 = 99013 # "100k"

    def charge_to_current_nocal(self, charge):
        u"""Convert charge per 10µs to mean currents without accounting for calibration."""
        ua_max = 1.836 / self.shunt * 1000000
        ua_step = ua_max / 65535
        return charge * ua_step

    def _load_tf(self, tf):
        num_bytes = tf.getmember('/tmp/mimosa//mimosa_scale_1.tmp').size
        charges = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int32)
        triggers = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int8)
        with tf.extractfile('/tmp/mimosa//mimosa_scale_1.tmp') as f:
            content = f.read()
            iterator = struct.iter_unpack('<I', content)
            i = 0
            for word in iterator:
                charges[i] = (word[0] >> 4)
                triggers[i] = (word[0] & 0x08) >> 3
                i += 1
        return charges, triggers


    def load_data(self, raw_data):
        """Load a MIMOSA log archive from a raw bytestring."""
        with io.BytesIO(raw_data) as data_object:
            with tarfile.open(fileobj = data_object) as tf:
                return self._load_tf(tf)

    def load_file(self, filename):
        """Load a MIMOSA log archive from a filename."""
        with tarfile.open(filename) as tf:
            return self._load_tf(tf)

    def currents_nocal(self, charges):
        u"""Convert charge per 10µs to mean currents without accounting for calibration."""
        ua_max = 1.836 / self.shunt * 1000000
        ua_step = ua_max / 65535
        return charges.astype(np.double) * ua_step

    def trigger_edges(self, triggers):
        """
        Return indexes of trigger edges (both 0->1 and 1->0) in log data.

        arguments:
        triggers -- trigger array as returned by load_data

        Ignores the first 10 seconds, which are used for calibration and may
        contain bogus triggers due to DUT resets. Returns a list of int.
        """
        trigidx = []
        prevtrig = triggers[0]
        # the device is reset for MIMOSA calibration in the first 10s and may
        # send bogus interrupts -> bogus triggers
        for i in range(1000000, triggers.shape[0]):
            trig = triggers[i]
            if trig != prevtrig:
                # Due to MIMOSA's integrate-read-reset cycle, the trigger
                # appears two points (20µs) before the corresponding data
                trigidx.append(i+2)
            prevtrig = trig
        return trigidx

    def calibration_edges(self, currents):
        """
        Return start/stop indexes of calibration measurements.

        arguments:
        currents -- uncalibrated currents as reported by MIMOSA. For best results,
            it may help to use a running mean, like so:
            currents = running_mean(currents_nocal(..., 10))

        Returns six indexes:
        - Disconnected start
        - Disconnected  stop
        - R1 (1 kOhm) start
        - R1 (1 kOhm) stop
        - R2 (100 kOhm) start
        - R2 (100 kOhm) stop
        """
        r1idx = 0
        r2idx = 0
        ua_r1 = self.voltage / self.r1 * 1000000
        # first second may be bogus
        for i in range(100000, len(currents)):
            if r1idx == 0 and currents[i] > ua_r1 * 0.6:
                r1idx = i
            elif r1idx != 0 and r2idx == 0 and i > (r1idx + 180000) and currents[i] < ua_r1 * 0.4:
                r2idx = i
        # 2s disconnected, 2s r1, 2s r2  with r1 < r2  ->  ua_r1 > ua_r2
        # allow 5ms buffer in both directions to account for bouncing relais contacts
        return r1idx - 180500, r1idx - 500, r1idx + 500, r2idx - 500, r2idx + 500, r2idx + 180500

    def calibration_function(self, charges, cal_edges):
        u"""
        Calculate calibration function from previously determined calibration phase.

        arguments:
        charges -- raw charges from MIMOSA
        cal_edges -- calibration edges as returned by calibration_edges

        returns (calibration_function, calibration_data):
        calibration_function -- charge in pJ (float) -> current in uA (float).
            Converts the amount of charge in a 10 µs interval to the
            mean current during the same interval.
        calibration_data -- dict containing the following keys:
            edges -- calibration points in the log file, in µs
            offset -- ...
            offset2 --  ...
            slope_low -- ...
            slope_high -- ...
            add_low -- ...
            add_high -- ..
            r0_err_uW -- mean error of uncalibrated data at "∞ Ohm" in µW
            r0_std_uW -- standard deviation of uncalibrated data at "∞ Ohm" in µW
            r1_err_uW -- mean error of uncalibrated data at 1 kOhm
            r1_std_uW -- stddev at 1 kOhm
            r2_err_uW -- mean error at 100 kOhm
            r2_std_uW -- stddev at 100 kOhm
        """
        dis_start, dis_end, r1_start, r1_end, r2_start, r2_end = cal_edges
        if dis_start < 0:
            dis_start = 0
        chg_r0 = charges[dis_start:dis_end]
        chg_r1 = charges[r1_start:r1_end]
        chg_r2 = charges[r2_start:r2_end]
        cal_0_mean = np.mean(chg_r0)
        cal_0_std = np.std(chg_r0)
        cal_r1_mean = np.mean(chg_r1)
        cal_r1_std = np.std(chg_r1)
        cal_r2_mean = np.mean(chg_r2)
        cal_r2_std = np.std(chg_r2)

        ua_r1 = self.voltage / self.r1 * 1000000
        ua_r2 = self.voltage / self.r2 * 1000000

        if cal_r2_mean > cal_0_mean:
            b_lower = (ua_r2 - 0) / (cal_r2_mean - cal_0_mean)
        else:
            vprint(self.verbose, '[W] 0 uA == %.f uA during calibration' % (ua_r2))
            b_lower = 0

        b_upper = (ua_r1 - ua_r2) / (cal_r1_mean - cal_r2_mean)
        b_total = (ua_r1 - 0) / (cal_r1_mean - cal_0_mean)

        a_lower = -b_lower * cal_0_mean
        a_upper = -b_upper * cal_r2_mean
        a_total = -b_total * cal_0_mean

        if self.shunt == 680:
            # R1 current is higher than shunt range -> only use R2 for calibration
            def calfunc(charge):
                if charge < cal_0_mean:
                    return 0
                else:
                    return charge * b_lower + a_lower
        else:
            def calfunc(charge):
                if charge < cal_0_mean:
                    return 0
                if charge <= cal_r2_mean:
                    return charge * b_lower + a_lower
                else:
                    return charge * b_upper + a_upper + ua_r2

        caldata = {
            'edges' : [x * 10 for x in cal_edges],
            'offset': cal_0_mean,
            'offset2' : cal_r2_mean,
            'slope_low' : b_lower,
            'slope_high' : b_upper,
            'add_low' : a_lower,
            'add_high' : a_upper,
            'r0_err_uW' : np.mean(self.currents_nocal(chg_r0)) * self.voltage,
            'r0_std_uW' : np.std(self.currents_nocal(chg_r0)) * self.voltage,
            'r1_err_uW' : (np.mean(self.currents_nocal(chg_r1)) - ua_r1) * self.voltage,
            'r1_std_uW' : np.std(self.currents_nocal(chg_r1)) * self.voltage,
            'r2_err_uW' : (np.mean(self.currents_nocal(chg_r2)) - ua_r2) * self.voltage,
            'r2_std_uW' : np.std(self.currents_nocal(chg_r2)) * self.voltage,
        }

        #print("if charge < %f : return 0" % cal_0_mean)
        #print("if charge <= %f : return charge * %f + %f" % (cal_r2_mean, b_lower, a_lower))
        #print("else : return charge * %f + %f + %f" % (b_upper, a_upper, ua_r2))

        return calfunc, caldata

    """
    def calcgrad(self, currents, threshold):
        grad = np.gradient(running_mean(currents * self.voltage, 10))
        # len(grad) == len(currents) - 9
        subst = []
        lastgrad = 0
        for i in range(len(grad)):
            # minimum substate duration: 10ms
            if np.abs(grad[i]) > threshold and i - lastgrad > 50:
                # account for skew introduced by running_mean and current
                # ramp slope (parasitic capacitors etc.)
                subst.append(i+10)
                lastgrad = i
        if lastgrad != i:
            subst.append(i+10)
        return subst

    # TODO konfigurierbare min/max threshold und len(gradidx) > X, binaere
    # Sache nach noetiger threshold. postprocessing mit
    # "zwei benachbarte substates haben sehr aehnliche werte / niedrige stddev" -> mergen
    # ... min/max muessen nicht vorgegeben werden, sind ja bekannt (0 / np.max(grad))
    # TODO bei substates / index foo den offset durch running_mean beachten
    # TODO ggf. clustering der 'abs(grad) > threshold' und bestimmung interessanter
    # uebergaenge dadurch?
    def gradfoo(self, currents):
        gradients = np.abs(np.gradient(running_mean(currents * self.voltage, 10)))
        gradmin = np.min(gradients)
        gradmax = np.max(gradients)
        threshold = np.mean([gradmin, gradmax])
        gradidx = self.calcgrad(currents, threshold)
        num_substates = 2
        while len(gradidx) != num_substates:
            if gradmax - gradmin < 0.1:
                # We did our best
                return threshold, gradidx
            if len(gradidx) > num_substates:
                gradmin = threshold
            else:
                gradmax = threshold
            threshold = np.mean([gradmin, gradmax])
            gradidx = self.calcgrad(currents, threshold)
        return threshold, gradidx
    """

    def analyze_states(self, charges, trigidx, ua_func):
        u"""
        Split log data into states and transitions and return mean power and duration for each element.

        arguments:
        charges -- raw charges (each element describes the charge transferred during 10 µs)
        trigidx -- "charges" indexes corresponding to a trigger edge
        ua_func -- charge -> current function as returned by calibration_function

        returns a list of (alternating) states and transitions.
        Each element is a dict containing:
            - isa: 'state' oder 'transition'
            - clip_rate: range(0..1) Anteil an Clipping im Energieverbrauch
            - raw_mean: Mittelwert der Rohwerte
            - raw_std: Standardabweichung der Rohwerte
            - uW_mean: Mittelwert der (kalibrierten) Leistungsaufnahme
            - uW_std: Standardabweichung der (kalibrierten) Leistungsaufnahme
            - us: Dauer

            Nur falls isa == 'transition':
            - timeout: Dauer des vorherigen Zustands
            - uW_mean_delta_prev: Differenz zwischen uW_mean und uW_mean des vorherigen Zustands
            - uW_mean_delta_next: Differenz zwischen uW_mean und uW_mean des Folgezustands
        """
        previdx = 0
        is_state = True
        iterdata = []
        for idx in trigidx:
            range_raw = charges[previdx:idx]
            range_ua = ua_func(range_raw)
            substates = {}

            if previdx != 0 and idx - previdx > 200:
                thr, subst = 0, [] #self.gradfoo(range_ua)
                if len(subst):
                    statelist = []
                    prevsubidx = 0
                    for subidx in subst:
                        statelist.append({
                            'duration': (subidx - prevsubidx) * 10,
                            'uW_mean' : np.mean(range_ua[prevsubidx : subidx] * self.voltage),
                            'uW_std'  : np.std(range_ua[prevsubidx : subidx] * self.voltage),
                        })
                        prevsubidx = subidx
                    substates = {
                        'threshold' : thr,
                        'states' : statelist,
                    }

            isa = 'state'
            if not is_state:
                isa = 'transition'

            data = {
                'isa': isa,
                'clip_rate' : np.mean(range_raw == 65535),
                'raw_mean': np.mean(range_raw),
                'raw_std' : np.std(range_raw),
                'uW_mean' : np.mean(range_ua * self.voltage),
                'uW_std' : np.std(range_ua * self.voltage),
                'us' : (idx - previdx) * 10,
            }

            if 'states' in substates:
                data['substates'] = substates
                ssum = np.sum(list(map(lambda x : x['duration'], substates['states'])))
                if ssum != data['us']:
                    vprint(self.verbose, "ERR: duration %d vs %d" % (data['us'], ssum))

            if isa == 'transition':
                # subtract average power of previous state
                # (that is, the state from which this transition originates)
                data['uW_mean_delta_prev'] = data['uW_mean'] - iterdata[-1]['uW_mean']
                # placeholder to avoid extra cases in the analysis
                data['uW_mean_delta_next'] = data['uW_mean']
                data['timeout'] = iterdata[-1]['us']
            elif len(iterdata) > 0:
                # subtract average power of next state
                # (the state into which this transition leads)
                iterdata[-1]['uW_mean_delta_next'] = iterdata[-1]['uW_mean'] - data['uW_mean']

            iterdata.append(data)

            previdx = idx
            is_state = not is_state
        return iterdata