1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
|
#!/usr/bin/env python3
import numpy as np
import os
import scipy
from bisect import bisect_left, bisect_right
def compensate(data, timestamps, event_timestamps, offline_index=None):
"""Use ruptures (e.g. Pelt, Dynp) to determine transition timestamps."""
from dfatool.pelt import PELT
# "rbf" und "l2" scheinen ähnlich gut zu funktionieren, l2 ist schneller. l1 ist wohl noch besser.
# PELT does not find changepoints for transitions which span just four or five data points (i.e., transitions shorter than ~2ms).
# Workaround: Double the data rate passed to PELT by interpolation ("stretch=2")
pelt = PELT(with_multiprocessing=False, stretch=2, min_dist=1, cache_dir=None)
expected_transition_start_timestamps = event_timestamps[::2]
transition_start_candidate_weights = list()
drift = 0
# TODO auch Kandidatenbestimmung per Ableitung probieren
# (-> Umgebungsvariable zur Auswahl)
pelt_traces = list()
range_timestamps = list()
candidate_weights = list()
for i, expected_start_ts in enumerate(expected_transition_start_timestamps):
expected_end_ts = event_timestamps[2 * i + 1]
# assumption: maximum deviation between expected and actual timestamps is 5ms.
# We use ±10ms to have some contetx for PELT
et_timestamps_start = bisect_left(timestamps, expected_start_ts - 10e-3)
et_timestamps_end = bisect_right(timestamps, expected_end_ts + 10e-3)
range_timestamps.append(timestamps[et_timestamps_start : et_timestamps_end + 1])
pelt_traces.append(data[et_timestamps_start : et_timestamps_end + 1])
# TODO for greedy mode, perform changepoint detection between greedy steps
# (-> the expected changepoint area is well-known, Dynp with 1/2 changepoints
# should work much better than "somewhere in these 20ms there should be a transition")
if os.getenv("DFATOOL_DRIFT_COMPENSATION_PENALTY"):
penalties = (int(os.getenv("DFATOOL_DRIFT_COMPENSATION_PENALTY")),)
else:
penalties = (1, 2, 5, 10, 15, 20)
for penalty in penalties:
changepoints_by_transition = pelt.get_changepoints(pelt_traces, penalty=penalty)
for i in range(len(expected_transition_start_timestamps)):
candidate_weights.append(dict())
for changepoint in changepoints_by_transition[i]:
if changepoint in candidate_weights[i]:
candidate_weights[i][changepoint] += 1
else:
candidate_weights[i][changepoint] = 1
for i, expected_start_ts in enumerate(expected_transition_start_timestamps):
expected_end_ts = event_timestamps[2 * i + 1]
# TODO ist expected_start_ts wirklich eine gute Referenz? Wenn vor einer Transition ein UART-Dump
# liegt, dürfte expected_end_ts besser sein, dann muss allerdings bei der compensation wieder auf
# start_ts zurückgerechnet werden.
transition_start_candidate_weights.append(
list(
map(
lambda k: (
range_timestamps[i][k] - expected_start_ts,
range_timestamps[i][k] - expected_end_ts,
candidate_weights[i][k],
),
sorted(candidate_weights[i].keys()),
)
)
)
if os.getenv("DFATOOL_COMPENSATE_DRIFT_GREEDY"):
compensated_timestamps = compensate_drift_greedy(
event_timestamps, transition_start_candidate_weights
)
else:
compensated_timestamps = compensate_drift_graph(
event_timestamps,
transition_start_candidate_weights,
offline_index=offline_index,
)
if os.getenv("DFATOOL_PLOT_DRIFT_CANDIDATES"):
import matplotlib.pyplot as plt
min_y = min(data)
max_y = max(data)
candidates = list()
for i, expected_start_ts in enumerate(expected_transition_start_timestamps):
expected_end_ts = event_timestamps[2 * i + 1]
for start_drift, _, _ in transition_start_candidate_weights[i]:
candidates.append(expected_start_ts + start_drift)
plt.plot(timestamps, data, "-", label="Measurements")
plt.vlines(
event_timestamps,
min_y,
max_y,
colors=["red"],
linestyles="solid",
label="Uncompensated Timestamps",
)
plt.vlines(
candidates,
min_y,
max_y,
colors=["green"],
linestyles="dashed",
label="Candidates (Changepoints)",
)
plt.vlines(
compensated_timestamps,
min_y,
max_y,
colors=["green"],
linestyles="solid",
label="Compensated Timestamps",
)
plt.xlabel("Timestamp [s]")
plt.ylabel("Power [W]")
plt.legend()
plt.show()
return compensated_timestamps
def compensate_drift_graph(
event_timestamps, transition_start_candidate_weights, offline_index=None
):
# Algorithm: Obtain the shortest path in a layered graph made up from
# transition candidates. Each node represents a transition candidate timestamp, and each layer represents a transition.
# Each node in layer i contains a directed edge to each node in layer i+1.
# The edge weight is the drift delta between the two nodes. So, if,
# node X (transition i, candidate a) has a drift of 5, and node Y
# (transition i+1, candidate b) has a drift of -2, the weight is 7.
# The first and last layer of the graph consists of a single node
# with a drift of 0, representing the start / end synchronization pulse, respectively.
# event_timestamps = [trans1 start, trans1 end, trans2 start, trans2 end, ...]
# transition_start_candidate_weights = [trans1 candidates, trans2 candidates, ...]
# trans i candidates = [(transition start delta ts, transition end delta ts, weight), ...]
prev_nodes = [0]
prev_drifts = [0]
node_drifts = [0]
edge_srcs = list()
edge_dsts = list()
csr_weights = list()
# (transition index) -> [candidate 0/start node, candidate 0/end node, candidate 1/start node, ...]
nodes_by_transition_index = dict()
# (node number) -> (transition index, candidate index, is_end)
# (-> transition_start_candidate_weights[transition index][candidate index][is_end])
transition_by_node = dict()
compensated_timestamps = list()
# default: up to two nodes may be skipped
max_skip_count = int(os.getenv("DFATOOL_DC_MAX_SKIP", 2))
for transition_index, candidates in enumerate(transition_start_candidate_weights):
new_nodes = list()
new_drifts = list()
i_offset = prev_nodes[-1] + 1
nodes_by_transition_index[transition_index] = list()
for new_node_i, (new_drift_start, new_drift_end, _) in enumerate(candidates):
for is_end, new_drift in enumerate((new_drift_start, new_drift_end)):
new_node = i_offset + new_node_i * 2 + is_end
nodes_by_transition_index[transition_index].append(new_node)
transition_by_node[new_node] = (transition_index, new_node_i, is_end)
new_nodes.append(new_node)
new_drifts.append(new_drift)
node_drifts.append(new_drift)
for prev_node_i, prev_node in enumerate(prev_nodes):
prev_drift = prev_drifts[prev_node_i]
edge_srcs.append(prev_node)
edge_dsts.append(new_node)
delta_drift = np.abs(prev_drift - new_drift)
# TODO evaluate "delta_drift ** 2" or similar nonlinear
# weights -> further penalize large drift deltas
csr_weights.append(delta_drift)
# a transition's candidate list may be empty
if len(new_nodes):
prev_nodes = new_nodes
prev_drifts = new_drifts
# add an end node for shortest path search
# (end node == final sync, so drift == 0)
new_node = prev_nodes[-1] + 1
for prev_node_i, prev_node in enumerate(prev_nodes):
prev_drift = prev_drifts[prev_node_i]
edge_srcs.append(prev_node)
edge_dsts.append(new_node)
csr_weights.append(np.abs(prev_drift))
# Add "skip" edges spanning from transition i to transition i+n (n > 1).
# These avoid synchronization errors caused by transitions wich are
# not found by changepiont detection, as long as they are sufficiently rare.
for transition_index, candidates in enumerate(transition_start_candidate_weights):
for skip_count in range(2, max_skip_count + 2):
if transition_index < skip_count:
continue
for from_node in nodes_by_transition_index[transition_index - skip_count]:
for to_node in nodes_by_transition_index[transition_index]:
(from_trans_i, from_candidate_i, from_is_end) = transition_by_node[
from_node
]
to_trans_i, to_candidate_i, to_is_end = transition_by_node[to_node]
assert transition_index - skip_count == from_trans_i
assert transition_index == to_trans_i
from_drift = transition_start_candidate_weights[from_trans_i][
from_candidate_i
][from_is_end]
to_drift = transition_start_candidate_weights[to_trans_i][
to_candidate_i
][to_is_end]
edge_srcs.append(from_node)
edge_dsts.append(to_node)
csr_weights.append(
np.abs(from_drift - to_drift) + (skip_count - 1) * 270e-6
)
sm = scipy.sparse.csr_matrix(
(csr_weights, (edge_srcs, edge_dsts)), shape=(new_node + 1, new_node + 1)
)
dm, predecessors = scipy.sparse.csgraph.shortest_path(
sm, return_predecessors=True, indices=0
)
nodes = list()
pred = predecessors[-1]
while pred > 0:
nodes.append(pred)
pred = predecessors[pred]
nodes = list(reversed(nodes))
if os.getenv("DFATOOL_PLOT_DRIFT_GRAPH"):
# plot expected
import matplotlib.pyplot as plt
# X: uncompensated timestamp (same transition -> same X position)
candidate_X = list()
# Y: absolute drift/delta of candidate
candidate_Y = list()
# X: uncompensated timestamp of selected candidates
selection_X = list()
# Y: absolitue drift/delta of selected candidates
selection_Y = list()
for transition_index, candidates in enumerate(
transition_start_candidate_weights
):
expected_start_ts = event_timestamps[transition_index * 2]
expected_end_ts = event_timestamps[transition_index * 2 + 1]
for i, (drift_start, drift_end, _) in enumerate(candidates):
candidate_X.append(expected_start_ts)
candidate_Y.append(drift_start)
candidate_X.append(expected_end_ts)
candidate_Y.append(drift_end)
for i, node in enumerate(nodes):
transition_index, _, is_end = transition_by_node[node]
expected_ts = event_timestamps[transition_index * 2 + is_end]
drift = node_drifts[node]
selection_X.append(expected_ts)
selection_Y.append(drift)
plt.plot(candidate_X, candidate_Y, "o", label="Changepoints")
plt.plot(
selection_X, selection_Y, "o--", color="red", label="Compensated Events"
)
plt.xlabel("Timestamp [s]")
plt.ylabel("Drift [s]")
plt.legend()
plt.show()
# first and last node are not included in "nodes" as they represent
# the start/stop sync pulse (and not a transition with sync candidates)
prev_transition = -1
for i, node in enumerate(nodes):
transition, _, _ = transition_by_node[node]
drift = node_drifts[node]
while transition - prev_transition > 1:
prev_drift = node_drifts[nodes[i - 1]]
prev_transition += 1
expected_start_ts = event_timestamps[prev_transition * 2] + prev_drift
expected_end_ts = event_timestamps[prev_transition * 2 + 1] + prev_drift
compensated_timestamps.append(expected_start_ts)
compensated_timestamps.append(expected_end_ts)
expected_start_ts = event_timestamps[transition * 2] + drift
expected_end_ts = event_timestamps[transition * 2 + 1] + drift
compensated_timestamps.append(expected_start_ts)
compensated_timestamps.append(expected_end_ts)
prev_transition = transition
# handle skips over the last few transitions, if any
transition = len(transition_start_candidate_weights) - 1
while transition - prev_transition > 0:
prev_drift = node_drifts[nodes[-1]]
prev_transition += 1
expected_start_ts = event_timestamps[prev_transition * 2] + prev_drift
expected_end_ts = event_timestamps[prev_transition * 2 + 1] + prev_drift
compensated_timestamps.append(expected_start_ts)
compensated_timestamps.append(expected_end_ts)
if os.getenv("DFATOOL_EXPORT_DRIFT_COMPENSATION"):
import json
from dfatool.utils import NpEncoder
expected_transition_start_timestamps = event_timestamps[::2]
filename = os.getenv("DFATOOL_EXPORT_DRIFT_COMPENSATION")
filename = f"{filename}.{offline_index}"
with open(filename, "w") as f:
json.dump(
[
expected_transition_start_timestamps,
transition_start_candidate_weights,
],
f,
cls=NpEncoder,
)
return compensated_timestamps
def compensate_drift_greedy(event_timestamps, transition_start_candidate_weights):
drift = 0
expected_transition_start_timestamps = event_timestamps[::2]
compensated_timestamps = list()
for i, expected_start_ts in enumerate(expected_transition_start_timestamps):
candidates = sorted(
map(
lambda x: x[0] + expected_start_ts,
transition_start_candidate_weights[i],
)
)
expected_start_ts += drift
expected_end_ts = event_timestamps[2 * i + 1] + drift
# choose the next candidates around the expected sync point.
start_right_sync = bisect_left(candidates, expected_start_ts)
start_left_sync = start_right_sync - 1
end_right_sync = bisect_left(candidates, expected_end_ts)
end_left_sync = end_right_sync - 1
if start_right_sync >= 0:
start_left_diff = expected_start_ts - candidates[start_left_sync]
else:
start_left_diff = np.inf
if start_right_sync < len(candidates):
start_right_diff = candidates[start_right_sync] - expected_start_ts
else:
start_right_diff = np.inf
if end_left_sync >= 0:
end_left_diff = expected_end_ts - candidates[end_left_sync]
else:
end_left_diff = np.inf
if end_right_sync < len(candidates):
end_right_diff = candidates[end_right_sync] - expected_end_ts
else:
end_right_diff = np.inf
drift_candidates = (
start_left_diff,
start_right_diff,
end_left_diff,
end_right_diff,
)
min_drift_i = np.argmin(drift_candidates)
min_drift = min(drift_candidates)
if min_drift < 5e-4:
if min_drift_i % 2 == 0:
# left
compensated_timestamps.append(expected_start_ts - min_drift)
compensated_timestamps.append(expected_end_ts - min_drift)
drift -= min_drift
else:
# right
compensated_timestamps.append(expected_start_ts + min_drift)
compensated_timestamps.append(expected_end_ts + min_drift)
drift += min_drift
else:
compensated_timestamps.append(expected_start_ts)
compensated_timestamps.append(expected_end_ts)
if os.getenv("DFATOOL_EXPORT_DRIFT_COMPENSATION"):
import json
from dfatool.utils import NpEncoder
expected_transition_start_timestamps = event_timestamps[::2]
with open(os.getenv("DFATOOL_EXPORT_DRIFT_COMPENSATION"), "w") as f:
json.dump(
[
expected_transition_start_timestamps,
transition_start_candidate_weights,
],
f,
cls=NpEncoder,
)
return compensated_timestamps
def compensate_etplusplus(
data, timestamps, event_timestamps, statechange_indexes, offline_index=None
):
"""Use hardware state changes reported by EnergyTrace++ to determine transition timestamps."""
expected_transition_start_timestamps = event_timestamps[::2]
compensated_timestamps = list()
drift = 0
for i, expected_start_ts in enumerate(expected_transition_start_timestamps):
expected_end_ts = event_timestamps[i * 2 + 1]
et_timestamps_start = bisect_left(timestamps, expected_start_ts - 10e-3)
et_timestamps_end = bisect_right(timestamps, expected_start_ts + 10e-3)
candidate_indexes = list()
for index in statechange_indexes:
if et_timestamps_start <= index <= et_timestamps_end:
candidate_indexes.append(index)
if len(candidate_indexes) == 2:
drift = timestamps[candidate_indexes[0]] - expected_start_ts
compensated_timestamps.append(expected_start_ts + drift)
compensated_timestamps.append(expected_end_ts + drift)
return compensated_timestamps
|