summaryrefslogtreecommitdiff
path: root/lib/functions.py
blob: 0b0044bca1c13965e607c9515a9dcc913ef8e653 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
#!/usr/bin/env python3
"""
Utilities for analytic description of parameter-dependent model attributes.

This module provides classes and helper functions useful for least-squares
regression and general handling of model functions.
"""
from itertools import chain, combinations
import logging
import numpy as np
import os
import re
from scipy import optimize
from .utils import is_numeric, param_to_ndarray

logger = logging.getLogger(__name__)


def powerset(iterable):
    """
    Return powerset of `iterable` elements.

    Example: `powerset([1, 2])` -> `[(), (1), (2), (1, 2)]`
    """
    s = list(iterable)
    return chain.from_iterable(combinations(s, r) for r in range(len(s) + 1))


def gplearn_to_function(function_str: str):
    """
    Convert gplearn-style function string to Python function.

    Takes a function string like "mul(add(X0, X1), X2)" and returns
    a Python function implementing the specified behaviour,
    e.g. "lambda x, y, z: (x + y) * z".

    Supported functions:
    add  --  x + y
    sub  --  x - y
    mul  --  x * y
    div  --  x / y if |y| > 0.001, otherwise 1
    sqrt --  sqrt(|x|)
    log  --  log(|x|) if |x| > 0.001, otherwise 0
    inv  --  1 / x if |x| > 0.001, otherwise 0
    """
    eval_globals = {
        "add": lambda x, y: x + y,
        "sub": lambda x, y: x - y,
        "mul": lambda x, y: x * y,
        "div": lambda x, y: np.divide(x, y) if np.abs(y) > 0.001 else 1.0,
        "sqrt": lambda x: np.sqrt(np.abs(x)),
        "log": lambda x: np.log(np.abs(x)) if np.abs(x) > 0.001 else 0.0,
        "inv": lambda x: 1.0 / x if np.abs(x) > 0.001 else 0.0,
    }

    last_arg_index = 0
    for i in range(0, 100):
        if function_str.find("X{:d}".format(i)) >= 0:
            last_arg_index = i

    arg_list = []
    for i in range(0, last_arg_index + 1):
        arg_list.append("X{:d}".format(i))

    eval_str = "lambda {}, *whatever: {}".format(",".join(arg_list), function_str)
    logger.debug(eval_str)
    return eval(eval_str, eval_globals)


class ParamFunction:
    """
    A one-dimensional model function, ready for least squares optimization and similar.

    Supports validity checks (e.g. if it is undefined for x <= 0) and an
    error measure.
    """

    def __init__(self, param_function, validation_function, num_vars, repr_str=None):
        """
        Create function object suitable for regression analysis.

        This documentation assumes that 1-dimensional functions
        (-> single float as model input) are used. However, n-dimensional
        functions (-> list of float as model input) are also supported.

        :param param_function: regression function (reg_param, model_param) -> float.
            reg_param is a list of regression variable values,
            model_param is the model input value (float).
            Example: `lambda rp, mp: rp[0] + rp[1] * mp`
        :param validation_function: function used to check whether param_function
            is defined for a given model_param. Signature:
            model_param -> bool
            Example: `lambda mp: mp > 0`
        :param num_vars: How many regression variables are used by this function,
            i.e., the length of param_function's reg_param argument.
        """
        self._param_function = param_function
        self._validation_function = validation_function
        self._num_variables = num_vars
        self.repr_str = repr_str

    def __repr__(self) -> str:
        if self.repr_str:
            return f"ParamFunction<{self.repr_str}>"
        return f"ParamFunction<{self._param_function}, {self.validation_function}, {self._num_variables}>"

    def is_valid(self, arg: float) -> bool:
        """
        Check whether the regression function is defined for the given argument.

        :param arg: argument (e.g. model parameter) to check for
        :returns: True iff the function is defined for `arg`
        """
        return self._validation_function(arg)

    def eval(self, param: list, arg: float) -> float:
        """
        Evaluate regression function.

        :param param: regression variable values (list of float)
        :param arg: model input (float)
        :returns: regression function output (float)
        """
        return self._param_function(param, arg)

    def error_function(self, P: list, X: float, y: float) -> float:
        """
        Calculate model error.

        :param P: regression variables as returned by optimization (list of float)
        :param X: model input (float)
        :param y: expected model output / ground truth for model input (float)
        :returns: Deviation between model output and ground truth (float)
        """
        return self._param_function(P, X) - y


class NormalizationFunction:
    """
    Wrapper for parameter normalization functions used in YAML PTA/DFA models.
    """

    def __init__(self, function_str: str):
        """
        Create a new normalization function from `function_str`.

        :param function_str: Function string. Must use the single argument
        `param` and return a float.
        """
        self._function_str = function_str
        self._function = eval("lambda param: " + function_str)

    def eval(self, param_value: float) -> float:
        """
        Evaluate the normalization function and return its output.

        :param param_value: Parameter value
        """
        return self._function(param_value)


class ModelFunction:
    """
    Encapsulates the behaviour of a single model attribute, e.g. TX power or write duration.

    The behaviour may be constant or depend on a number of factors. Modelfunction is a virtual base class,
    individuel decendents describe actual behaviour.

    Common attributes:
    :param value: median data value
    :type value: float
    :param value_error: static model value error
    :type value_error: dict, optional
    :param function_error: model error
    :type value_error: dict, optional
    """

    def __init__(self, value):
        # a model always has a static (median/mean) value. For StaticFunction, it's the only data point.
        # For more complex models, it's usede both as fallback in case the model cannot predict the current
        # parameter combination, and for use cases requiring static models
        self.value = value

        # A ModelFunction may track its own accuracy, both of the static value and of the eval() method.
        # However, it does not specify how the accuracy was calculated (e.g. which data was used and whether cross-validation was performed)
        self.value_error = None
        self.function_error = None

    def is_predictable(self, param_list):
        raise NotImplementedError

    def eval(self, param_list):
        raise NotImplementedError

    def eval_mae(self, param_list):
        """Return model Mean Absolute Error (MAE) for `param_list`."""
        if self.is_predictable(param_list):
            return self.function_error["mae"]
        return self.value_error["mae"]

    def webconf_function_map(self):
        return list()

    def to_json(self, **kwargs):
        """Convert model to JSON."""
        ret = {
            "value": self.value,
            "valueError": self.value_error,
            "functionError": self.function_error,
        }
        return ret

    @classmethod
    def from_json(cls, data):
        """
        Create ModelFunction instance from JSON.

        Delegates to StaticFunction, SplitFunction, etc. as appropriate.
        """
        if data["type"] == "static":
            mf = StaticFunction.from_json(data)
        elif data["type"] == "split":
            mf = SplitFunction.from_json(data)
        elif data["type"] == "analytic":
            mf = AnalyticFunction.from_json(data)
        else:
            raise ValueError("Unknown ModelFunction type: " + data["type"])

        if "valueError" in data:
            mf.value_error = data["valueError"]
        if "functionError" in data:
            mf.function_error = data["functionError"]

        return mf

    @classmethod
    def from_json_maybe(cls, json_wrapped: dict, attribute: str):
        # Legacy Code for PTA / tests. Do not use.
        if type(json_wrapped) is dict and attribute in json_wrapped:
            # benchmark data obtained before 2021-03-04 uses {"attr": {"static": 0}}
            # benchmark data obtained after  2021-03-04 uses {"attr": {"type": "static", "value": 0}} or {"attr": None}
            # from_json expects the latter.
            if json_wrapped[attribute] is None:
                return None
            if (
                "static" in json_wrapped[attribute]
                and "type" not in json_wrapped[attribute]
            ):
                json_wrapped[attribute]["type"] = "static"
                json_wrapped[attribute]["value"] = json_wrapped[attribute]["static"]
                json_wrapped[attribute].pop("static")
            return cls.from_json(json_wrapped[attribute])
        return StaticFunction(0)


class StaticFunction(ModelFunction):
    def is_predictable(self, param_list=None):
        """
        Return whether the model function can be evaluated on the given parameter values.

        For a StaticFunction, this is always the case (i.e., this function always returns true).
        """
        return True

    def eval(self, param_list=None):
        """
        Evaluate model function with specified param/arg values.

        Far a Staticfunction, this is just the static value

        """
        return self.value

    def to_json(self, **kwargs):
        ret = super().to_json(**kwargs)
        ret.update({"type": "static", "value": self.value})
        return ret

    def to_dot(self, pydot, graph, feature_names, parent=None):
        graph.add_node(
            pydot.Node(str(id(self)), label=f"{self.value:.2f}", shape="rectangle")
        )

    @classmethod
    def from_json(cls, data):
        assert data["type"] == "static"
        return cls(data["value"])

    def __repr__(self):
        return f"StaticFunction({self.value})"


class SplitFunction(ModelFunction):
    def __init__(self, value, param_index, child):
        super().__init__(value)
        self.param_index = param_index
        self.child = child

    def is_predictable(self, param_list):
        """
        Return whether the model function can be evaluated on the given parameter values.

        The first value corresponds to the lexically first model parameter, etc.
        All parameters must be set, not just the ones this function depends on.

        Returns False iff a parameter the function depends on is not numeric
        (e.g. None).
        """
        param_value = param_list[self.param_index]
        if param_value in self.child:
            return self.child[param_value].is_predictable(param_list)
        return all(
            map(lambda child: child.is_predictable(param_list), self.child.values())
        )

    def eval(self, param_list):
        param_value = param_list[self.param_index]
        if param_value in self.child:
            return self.child[param_value].eval(param_list)
        return np.mean(
            list(map(lambda child: child.eval(param_list), self.child.values()))
        )

    def webconf_function_map(self):
        ret = list()
        for child in self.child.values():
            ret.extend(child.webconf_function_map())
        return ret

    def to_json(self, **kwargs):
        ret = super().to_json(**kwargs)
        with_param_name = kwargs.get("with_param_name", False)
        param_names = kwargs.get("param_names", list())
        update = {
            "type": "split",
            "paramIndex": self.param_index,
            "child": dict([[k, v.to_json(**kwargs)] for k, v in self.child.items()]),
        }
        if with_param_name and param_names:
            update["paramName"] = param_names[self.param_index]
        ret.update(update)
        return ret

    def get_number_of_nodes(self):
        ret = 1
        for v in self.child.values():
            if type(v) is SplitFunction:
                ret += v.get_number_of_nodes()
            else:
                ret += 1
        return ret

    def get_max_depth(self):
        ret = [0]
        for v in self.child.values():
            if type(v) is SplitFunction:
                ret.append(v.get_max_depth())
        return 1 + max(ret)

    def get_number_of_leaves(self):
        ret = 0
        for v in self.child.values():
            if type(v) is SplitFunction:
                ret += v.get_number_of_leaves()
            else:
                ret += 1
        return ret

    def to_dot(self, pydot, graph, feature_names, parent=None):
        try:
            label = feature_names[self.param_index]
        except IndexError:
            label = f"param{self.param_index}"
        graph.add_node(pydot.Node(str(id(self)), label=label))
        for key, child in self.child.items():
            child.to_dot(pydot, graph, feature_names, str(id(self)))
            graph.add_edge(pydot.Edge(str(id(self)), str(id(child)), label=key))

    @classmethod
    def from_json(cls, data):
        assert data["type"] == "split"
        self = cls(data["value"], data["paramIndex"], dict())

        for k, v in data["child"].items():
            self.child[k] = ModelFunction.from_json(v)

        return self

    def __repr__(self):
        return f"SplitFunction<{self.value}, param_index={self.param_index}>"


class SubstateFunction(ModelFunction):
    def __init__(self, value, sequence_by_count, count_model, sub_model):
        super().__init__(value)
        self.sequence_by_count = sequence_by_count
        self.count_model = count_model
        self.sub_model = sub_model

        # only used by analyze-archive model quality evaluation. Not serialized.
        self.static_duration = None

    def is_predictable(self, param_list):
        substate_count = round(self.count_model.eval(param_list))
        return substate_count in self.sequence_by_count

    def eval(self, param_list, duration=None):
        substate_count = round(self.count_model.eval(param_list))
        cumulative_energy = 0
        total_duration = 0
        substate_model, _ = self.sub_model.get_fitted()
        substate_sequence = self.sequence_by_count[substate_count]
        for i, sub_name in enumerate(substate_sequence):
            sub_duration = substate_model(sub_name, "duration", param=param_list)
            sub_power = substate_model(sub_name, "power", param=param_list)

            if i == substate_count - 1:
                if duration is not None:
                    sub_duration = duration - total_duration
                elif self.static_duration is not None:
                    sub_duration = self.static_duration - total_duration

            cumulative_energy += sub_power * sub_duration
            total_duration += sub_duration

        return cumulative_energy / total_duration

    def to_json(self, **kwargs):
        ret = super().to_json(**kwargs)
        ret.update(
            {
                "type": "substate",
                "sequence": self.sequence_by_count,
                "countModel": self.count_model.to_json(**kwargs),
                "subModel": self.sub_model.to_json(**kwargs),
            }
        )
        return ret

    @classmethod
    def from_json(cls, data):
        assert data["type"] == "substate"
        raise NotImplementedError

    def __repr__(self):
        return "SubstateFunction"


class SKLearnRegressionFunction(ModelFunction):
    def __init__(self, value, regressor, categorial_to_index, ignore_index):
        super().__init__(value)
        self.regressor = regressor
        self.categorial_to_index = categorial_to_index
        self.ignore_index = ignore_index

    def is_predictable(self, param_list=None):
        """
        Return whether the model function can be evaluated on the given parameter values.

        For a StaticFunction, this is always the case (i.e., this function always returns true).
        """
        return True

    def eval(self, param_list=None):
        """
        Evaluate model function with specified param/arg values.

        Far a Staticfunction, this is just the static value

        """
        if param_list is None:
            return self.value
        actual_param_list = list()
        for i, param in enumerate(param_list):
            if not self.ignore_index[i]:
                if i in self.categorial_to_index:
                    try:
                        actual_param_list.append(self.categorial_to_index[i][param])
                    except KeyError:
                        # param was not part of training data. substitute an unused scalar.
                        # Note that all param values which were not part of training data map to the same scalar this way.
                        # This should be harmless.
                        actual_param_list.append(
                            max(self.categorial_to_index[i].values()) + 1
                        )
                else:
                    actual_param_list.append(param)
        predictions = self.regressor.predict(np.array([actual_param_list]))
        if predictions.shape == (1,):
            return predictions[0]
        return predictions


class CARTFunction(SKLearnRegressionFunction):
    def get_number_of_nodes(self):
        return self.regressor.tree_.node_count

    def get_number_of_leaves(self):
        return self.regressor.tree_.n_leaves

    def get_max_depth(self):
        return self.regressor.get_depth()

    def to_json(self, feature_names=None, **kwargs):
        import sklearn.tree

        self.leaf_id = sklearn.tree._tree.TREE_LEAF
        self.feature_names = feature_names

        ret = super().to_json(**kwargs)
        ret.update(self.recurse_(self.regressor.tree_, 0))
        return ret

    # recursive function for all nodes:
    def recurse_(self, tree, node_id, depth=0):
        left_child = tree.children_left[node_id]
        right_child = tree.children_right[node_id]

        # basic leaf with standard values
        # conversion because of numpy
        sub_data = {
            "functionError": None,
            "type": "static",
            "value": float(tree.value[node_id]),
            "valueError": float(tree.impurity[node_id]),
            # "samples": int(tree.n_node_samples[node_id])
        }

        # if has childs / not a leaf:
        if left_child != self.leaf_id or right_child != self.leaf_id:
            # sub_data["paramName"] = "X[" + str(self.regressor.tree_.feature[left_child_id]) + "]"
            # sub_data["paramIndex"] = int(self.regressor.tree_.feature[left_child_id])
            sub_data["paramName"] = self.feature_names[
                self.regressor.tree_.feature[node_id]
            ]
            sub_data["paramDecisionValue"] = tree.threshold[node_id]
            sub_data["type"] = "scalarSplit"

        # child value
        if left_child != self.leaf_id:
            sub_data["left"] = self.recurse_(tree, left_child, depth=depth + 1)
        if right_child != self.leaf_id:
            sub_data["right"] = self.recurse_(tree, right_child, depth=depth + 1)

        return sub_data


class LMTFunction(SKLearnRegressionFunction):
    def get_number_of_nodes(self):
        return self.regressor.node_count

    def get_number_of_leaves(self):
        return len(self.regressor._leaves.keys())

    def get_max_depth(self):
        return max(map(len, self.regressor._leaves.keys())) + 1


class XGBoostFunction(SKLearnRegressionFunction):
    def to_json(self):
        import json

        tempfile = f"/tmp/xgb{os.getpid()}.json"

        self.regressor.get_booster().dump_model(
            tempfile, dump_format="json", with_stats=True
        )
        with open(tempfile, "r") as f:
            data = json.load(f)
        os.remove(tempfile)
        return data

    def get_number_of_nodes(self):
        return sum(map(self._get_number_of_nodes, self.to_json()))

    def _get_number_of_nodes(self, data):
        ret = 1
        for child in data.get("children", list()):
            ret += self._get_number_of_nodes(child)
        return ret

    def get_number_of_leaves(self):
        return sum(map(self._get_number_of_leaves, self.to_json()))

    def _get_number_of_leaves(self, data):
        if "leaf" in data:
            return 1
        ret = 0
        for child in data.get("children", list()):
            ret += self._get_number_of_leaves(child)
        return ret

    def get_max_depth(self):
        return max(map(self._get_max_depth, self.to_json()))

    def _get_max_depth(self, data):
        ret = [0]
        for child in data.get("children", list()):
            ret.append(self._get_max_depth(child))
        return 1 + max(ret)


# first-order linear function (no feature interaction)
class FOLFunction(ModelFunction):
    def __init__(self, value, parameters, num_args=0):
        super().__init__(value)
        self.parameter_names = parameters
        self._num_args = num_args
        self.fit_success = False

    def fit(self, param_values, data):
        categorial_to_scalar = bool(
            int(os.getenv("DFATOOL_PARAM_CATEGORIAL_TO_SCALAR", "0"))
        )
        fit_parameters, categorial_to_index, ignore_index = param_to_ndarray(
            param_values,
            with_nan=False,
            categorial_to_scalar=categorial_to_scalar,
        )
        self.categorial_to_index = categorial_to_index
        self.ignore_index = ignore_index
        fit_parameters = fit_parameters.swapaxes(0, 1)
        num_vars = fit_parameters.shape[0]
        funbuf = "lambda reg_param, model_param: 0"
        for i in range(num_vars):
            funbuf += f" + reg_param[{i}] * model_param[{i}]"
        self._function_str = self.model_function = funbuf
        self._function = eval(funbuf)

        error_function = lambda P, X, y: self._function(P, X) - y
        self.model_args = list(np.ones((num_vars)))
        try:
            res = optimize.least_squares(
                error_function, self.model_args, args=(fit_parameters, data), xtol=2e-15
            )
        except ValueError as err:
            logger.warning(f"Fit failed: {err} (function: {self.model_function})")
            return
        if res.status > 0:
            self.model_args = res.x
            self.fit_success = True
        else:
            logger.warning(
                f"Fit failed: {res.message} (function: {self.model_function})"
            )

    def is_predictable(self, param_list=None):
        """
        Return whether the model function can be evaluated on the given parameter values.
        """
        return True

    def eval(self, param_list=None):
        """
        Evaluate model function with specified param/arg values.

        Far a Staticfunction, this is just the static value

        """
        if param_list is None:
            return self.value
        actual_param_list = list()
        for i, param in enumerate(param_list):
            if not self.ignore_index[i]:
                if i in self.categorial_to_index:
                    try:
                        actual_param_list.append(self.categorial_to_index[i][param])
                    except KeyError:
                        # param was not part of training data. substitute an unused scalar.
                        # Note that all param values which were not part of training data map to the same scalar this way.
                        # This should be harmless.
                        actual_param_list.append(
                            max(self.categorial_to_index[i].values()) + 1
                        )
                else:
                    actual_param_list.append(param)
        try:
            return self._function(self.model_args, actual_param_list)
        except FloatingPointError as e:
            logger.error(
                f"{e} when predicting {self._function_str}({param_list}), returning static value"
            )
            return self.value


class AnalyticFunction(ModelFunction):
    """
    A multi-dimensional model function, generated from a string, which can be optimized using regression.

    The function describes a single model attribute (e.g. TX duration or send(...) energy)
    and how it is influenced by model parameters such as configured bit rate or
    packet length.
    """

    def __init__(
        self,
        value,
        function_str,
        parameters,
        num_args=0,
        regression_args=None,
        fit_by_param=None,
    ):
        """
        Create a new AnalyticFunction object from a function string.

        :param function_str: the function.
            Refer to regression variables using regression_arg(123),
            to parameters using parameter(name),
            and to function arguments (if any) using function_arg(123).
            Example: "regression_arg(0) + regression_arg(1) * parameter(txbytes)"
        :param parameters: list containing the names of all model parameters,
            including those not used in function_str, sorted lexically.
            Sorting is mandatory, as parameter indexes (and not names) are used internally.
        :param num_args: number of local function arguments, if any. Set to 0 if
            the model attribute does not belong to a function or if function
            arguments are not included in the model.
        :param regression_args: Initial regression variable values,
            both for function usage and least squares optimization.
            If unset, defaults to [1, 1, 1, ...]
        """
        super().__init__(value)
        self._parameter_names = parameters
        self._num_args = num_args
        self.model_function = function_str
        rawfunction = function_str
        self._dependson = [False] * (len(parameters) + num_args)
        self.fit_success = False
        self.fit_by_param = fit_by_param

        if type(function_str) == str:
            num_vars_re = re.compile(r"regression_arg\(([0-9]+)\)")
            num_vars = max(map(int, num_vars_re.findall(function_str))) + 1
            for i in range(len(parameters)):
                if rawfunction.find("parameter({})".format(parameters[i])) >= 0:
                    self._dependson[i] = True
                    rawfunction = rawfunction.replace(
                        "parameter({})".format(parameters[i]),
                        "model_param[{:d}]".format(i),
                    )
            for i in range(0, num_args):
                if rawfunction.find("function_arg({:d})".format(i)) >= 0:
                    self._dependson[len(parameters) + i] = True
                    rawfunction = rawfunction.replace(
                        "function_arg({:d})".format(i),
                        "model_param[{:d}]".format(len(parameters) + i),
                    )
            for i in range(num_vars):
                rawfunction = rawfunction.replace(
                    "regression_arg({:d})".format(i), "reg_param[{:d}]".format(i)
                )
            self._function_str = rawfunction
            self._function = eval("lambda reg_param, model_param: " + rawfunction)
        else:
            self._function_str = "raise ValueError"
            self._function = function_str

        if regression_args:
            self.model_args = regression_args.copy()
            self._fit_success = True
        elif type(function_str) == str:
            self.model_args = list(np.ones((num_vars)))
        else:
            self.model_args = []

    def get_fit_data(self, by_param):
        """
        Return training data suitable for scipy.optimize.least_squares.

        :param by_param: measurement data, partitioned by parameter/arg values.
            by_param[*] must be a list or 1-D NumPy array containing the ground truth.
            The parameter values (dict keys) must be numeric for
            all parameters this function depends on -- otherwise, the
            corresponding data will be left out. Parameter values must be
            ordered according to the order of parameter names used in
            the ParamFunction constructor. Argument values (if any) always come after
            parameters, in the order of their index in the function signature.

        :return: (X, Y, num_valid, num_total):
            X -- 2-D NumPy array of parameter combinations (model input).
                First dimension is the parameter/argument index, the second
                dimension contains its values.
                Example: X[0] contains the first parameter's values.
            Y -- 1-D NumPy array of training data (desired model output).
            num_valid -- amount of distinct parameter values suitable for optimization
            num_total -- total amount of distinct parameter values
        """
        dimension = len(self._parameter_names) + self._num_args
        X = [[] for i in range(dimension)]
        Y = []

        num_valid = 0
        num_total = 0

        for key, val in by_param.items():
            if len(key) == dimension:
                valid = True
                num_total += 1
                for i in range(dimension):
                    if self._dependson[i] and not is_numeric(key[i]):
                        valid = False
                if valid:
                    num_valid += 1
                    Y.extend(val)
                    for i in range(dimension):
                        if self._dependson[i]:
                            X[i].extend([float(key[i])] * len(val))
                        else:
                            X[i].extend([np.nan] * len(val))
            else:
                logger.warning(
                    "Invalid parameter key length while gathering fit data. is {}, want {}.".format(
                        len(key), dimension
                    )
                )
        X = np.array(X)
        Y = np.array(Y)

        return X, Y, num_valid, num_total

    def fit(self, by_param):
        """
        Fit the function on measurements via least squares regression.

        :param by_param: measurement data, partitioned by parameter/arg values

        The ground truth is read from by_param[*],
        which must be a list or 1-D NumPy array. Parameter values must be
        ordered according to the parameter names in the constructor. If
        argument values are present, they must come after parameter values
        in the order of their appearance in the function signature.
        """
        X, Y, num_valid, num_total = self.get_fit_data(by_param)
        if num_valid > 2:
            error_function = lambda P, X, y: self._function(P, X) - y
            try:
                res = optimize.least_squares(
                    error_function, self.model_args, args=(X, Y), xtol=2e-15
                )
            except ValueError as err:
                logger.warning(f"Fit failed: {err} (function: {self.model_function})")
                return
            if res.status > 0:
                self.model_args = res.x
                self.fit_success = True
            else:
                logger.warning(
                    f"Fit failed: {res.message} (function: {self.model_function})"
                )
        else:
            logger.warning("Insufficient amount of valid parameter keys, cannot fit")

    def is_predictable(self, param_list):
        """
        Return whether the model function can be evaluated on the given parameter values.

        The first value corresponds to the lexically first model parameter, etc.
        All parameters must be set, not just the ones this function depends on.

        Returns False iff a parameter the function depends on is not numeric
        (e.g. None).
        """
        for i, param in enumerate(param_list):
            if self._dependson[i] and not is_numeric(param):
                return False
        return True

    def eval(self, param_list):
        """
        Evaluate model function with specified param/arg values.

        :param param_list: parameter values (list of float). First item
            corresponds to lexically first parameter, etc.
        :param arg_list: argument values (list of float), if arguments are used.
        """
        try:
            return self._function(self.model_args, param_list)
        except FloatingPointError as e:
            logger.error(
                f"{e} when predicting {self._function_str}({param_list}), returning static value"
            )
            return self.value

    def webconf_function_map(self):
        js_buf = self.model_function
        for i in range(len(self.model_args)):
            js_buf = js_buf.replace(f"regression_arg({i})", str(self.model_args[i]))
        for parameter_name in self._parameter_names:
            js_buf = js_buf.replace(
                f"parameter({parameter_name})", f"""param["{parameter_name}"]"""
            )
        for arg_num in range(self._num_args):
            js_buf = js_buf.replace(f"function_arg({arg_num})", f"args[{arg_num}]")
        js_buf = "(param, args) => " + js_buf.replace("np.", "Math.")
        return [(f'"{self.model_function}"', js_buf)]

    def to_json(self, **kwargs):
        ret = super().to_json(**kwargs)
        ret.update(
            {
                "type": "analytic",
                "functionStr": self.model_function,
                "argCount": self._num_args,
                "parameterNames": self._parameter_names,
                "regressionModel": list(self.model_args),
            }
        )
        return ret

    def to_dot(self, pydot, graph, feature_names, parent=None):
        model_function = self.model_function
        for i, arg in enumerate(self.model_args):
            model_function = model_function.replace(
                f"regression_arg({i})", f"{arg:.2f}"
            )
        graph.add_node(
            pydot.Node(str(id(self)), label=model_function, shape="rectangle")
        )

    @classmethod
    def from_json(cls, data):
        assert data["type"] == "analytic"

        return cls(
            data["value"],
            data["functionStr"],
            data["parameterNames"],
            data["argCount"],
            data["regressionModel"],
        )

    def __repr__(self):
        return f"AnalyticFunction<{self.value}, {self.model_function}>"


class analytic:
    """
    Utilities for analytic description of parameter-dependent model attributes and regression analysis.

    provided functions:
    functions -- retrieve pre-defined set of regression function candidates
    function_powerset -- combine several per-parameter functions into a single AnalyticFunction
    """

    _num0_8 = np.vectorize(lambda x: 8 - bin(int(x)).count("1"))
    _num0_16 = np.vectorize(lambda x: 16 - bin(int(x)).count("1"))
    _num1 = np.vectorize(lambda x: bin(int(x)).count("1"))
    _safe_log = np.vectorize(lambda x: np.log(np.abs(x)) if np.abs(x) > 0.001 else 1.0)
    _safe_inv = np.vectorize(lambda x: 1 / x if np.abs(x) > 0.001 else 1.0)
    _safe_sqrt = np.vectorize(lambda x: np.sqrt(np.abs(x)))

    _function_map = {
        "linear": lambda x: x,
        "logarithmic": np.log,
        "logarithmic1": lambda x: np.log(x + 1),
        "exponential": np.exp,
        "square": lambda x: x**2,
        "inverse": lambda x: 1 / x,
        "sqrt": lambda x: np.sqrt(np.abs(x)),
        "num0_8": _num0_8,
        "num0_16": _num0_16,
        "num1": _num1,
        "safe_log": lambda x: np.log(np.abs(x)) if np.abs(x) > 0.001 else 1.0,
        "safe_inv": lambda x: 1 / x if np.abs(x) > 0.001 else 1.0,
        "safe_sqrt": lambda x: np.sqrt(np.abs(x)),
    }

    @staticmethod
    def functions(safe_functions_enabled=False):
        """
        Retrieve pre-defined set of regression function candidates.

        :param safe_functions_enabled: Include "safe" variants of functions with
            limited argument range, e.g. a safe
            inverse which returns 1 when dividing by 0.

        Returns a dict of functions which are typical for energy/timing
        behaviour of embedded hardware, e.g. linear, exponential or inverse
        dependency on a configuration setting/runtime variable.

        Each function is a ParamFunction object. In most cases, two regression
        variables are expected.
        """
        functions = {
            "linear": ParamFunction(
                lambda reg_param, model_param: reg_param[0]
                + reg_param[1] * model_param,
                lambda model_param: True,
                2,
                repr_str="β₀ + β₁ * x",
            ),
            "logarithmic": ParamFunction(
                lambda reg_param, model_param: reg_param[0]
                + reg_param[1] * np.log(model_param),
                lambda model_param: model_param > 0,
                2,
                repr_str="β₀ + β₁ * np.log(x)",
            ),
            "logarithmic1": ParamFunction(
                lambda reg_param, model_param: reg_param[0]
                + reg_param[1] * np.log(model_param + 1),
                lambda model_param: model_param > -1,
                2,
                repr_str="β₀ + β₁ * np.log(x+1)",
            ),
            "exponential": ParamFunction(
                lambda reg_param, model_param: reg_param[0]
                + reg_param[1] * np.exp(model_param),
                lambda model_param: model_param <= 64,
                2,
                repr_str="β₀ + β₁ * np.exp(x)",
            ),
            #'polynomial' : lambda reg_param, model_param: reg_param[0] + reg_param[1] * model_param + reg_param[2] * model_param ** 2,
            "square": ParamFunction(
                lambda reg_param, model_param: reg_param[0]
                + reg_param[1] * model_param**2,
                lambda model_param: True,
                2,
                repr_str="β₀ + β₁ * x²",
            ),
            "inverse": ParamFunction(
                lambda reg_param, model_param: reg_param[0]
                + reg_param[1] / model_param,
                lambda model_param: model_param != 0,
                2,
                repr_str="β₀ + β₁ * 1/x",
            ),
            "sqrt": ParamFunction(
                lambda reg_param, model_param: reg_param[0]
                + reg_param[1] * np.sqrt(model_param),
                lambda model_param: model_param >= 0,
                2,
                repr_str="β₀ + β₁ * np.sqrt(x)",
            ),
            # "num0_8": ParamFunction(
            #    lambda reg_param, model_param: reg_param[0]
            #    + reg_param[1] * analytic._num0_8(model_param),
            #    lambda model_param: True,
            #    2,
            # ),
            # "num0_16": ParamFunction(
            #    lambda reg_param, model_param: reg_param[0]
            #    + reg_param[1] * analytic._num0_16(model_param),
            #    lambda model_param: True,
            #    2,
            # ),
            # "num1": ParamFunction(
            #    lambda reg_param, model_param: reg_param[0]
            #    + reg_param[1] * analytic._num1(model_param),
            #    lambda model_param: True,
            #    2,
            # ),
        }

        if safe_functions_enabled or bool(
            int(os.getenv("DFATOOL_REGRESSION_SAFE_FUNCTIONS", "0"))
        ):
            functions.pop("logarithmic1")
            functions.pop("logarithmic")
            functions["safe_log"] = ParamFunction(
                lambda reg_param, model_param: reg_param[0]
                + reg_param[1] * analytic._safe_log(model_param),
                lambda model_param: True,
                2,
                repr_str="β₀ + β₁ * safe_log(x)",
            )
            functions.pop("inverse")
            functions["safe_inv"] = ParamFunction(
                lambda reg_param, model_param: reg_param[0]
                + reg_param[1] * analytic._safe_inv(model_param),
                lambda model_param: True,
                2,
                repr_str="β₀ + β₁ * safe(1/x)",
            )
            functions.pop("sqrt")
            functions["safe_sqrt"] = ParamFunction(
                lambda reg_param, model_param: reg_param[0]
                + reg_param[1] * analytic._safe_sqrt(model_param),
                lambda model_param: True,
                2,
                repr_str="β₀ + β₁ * safe_sqrt(x)",
            )

        if bool(int(os.getenv("DFATOOL_FIT_LINEAR_ONLY", "0"))):
            functions = {"linear": functions["linear"]}

        return functions

    @staticmethod
    def _fmap(reference_type, reference_name, function_type):
        """Map arg/parameter name and best-fit function name to function text suitable for AnalyticFunction."""
        ref_str = "{}({})".format(reference_type, reference_name)
        if function_type == "linear":
            return ref_str
        if function_type == "logarithmic":
            return "np.log({})".format(ref_str)
        if function_type == "logarithmic1":
            return "np.log({} + 1)".format(ref_str)
        if function_type == "exponential":
            return "np.exp({})".format(ref_str)
        if function_type == "exponential":
            return "np.exp({})".format(ref_str)
        if function_type == "square":
            return "({})**2".format(ref_str)
        if function_type == "inverse":
            return "1/({})".format(ref_str)
        if function_type == "sqrt":
            return "np.sqrt({})".format(ref_str)
        return "analytic._{}({})".format(function_type, ref_str)

    @staticmethod
    def function_powerset(fit_results, parameter_names, num_args=0):
        """
        Combine per-parameter regression results into a single multi-dimensional function.

        :param fit_results: results dict. One element per parameter, each containing
            a dict of the form {'best' : name of function with best fit}.
            Must not include parameters which do not influence the model attribute.
            Example: {'txpower' : {'best': 'exponential'}}
        :param parameter_names: Parameter names, including those left
            out in fit_results because they do not influence the model attribute.
            Must be sorted lexically.
            Example: ['bitrate', 'txpower']
        :param num_args: number of local function arguments, if any. Set to 0 if
            the model attribute does not belong to a function or if function
            arguments are not included in the model.

        Returns an AnalyticFunction instantce corresponding to the combined
        function.
        """
        buf = "0"
        arg_idx = 0
        for combination in powerset(fit_results.items()):
            buf += " + regression_arg({:d})".format(arg_idx)
            arg_idx += 1
            for function_item in combination:
                if is_numeric(function_item[0]):
                    buf += " * {}".format(
                        analytic._fmap(
                            "function_arg", function_item[0], function_item[1]["best"]
                        )
                    )
                else:
                    buf += " * {}".format(
                        analytic._fmap(
                            "parameter", function_item[0], function_item[1]["best"]
                        )
                    )
        return AnalyticFunction(
            None, buf, parameter_names, num_args, fit_by_param=fit_results
        )