1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
|
#!/usr/bin/env python3
"""
Utilities for analytic description of parameter-dependent model attributes.
This module provides classes and helper functions useful for least-squares
regression and general handling of model functions.
"""
from itertools import chain, combinations
import logging
import numpy as np
import re
from scipy import optimize
from .utils import is_numeric
arg_support_enabled = True
logger = logging.getLogger(__name__)
def powerset(iterable):
"""
Return powerset of `iterable` elements.
Example: `powerset([1, 2])` -> `[(), (1), (2), (1, 2)]`
"""
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s) + 1))
def gplearn_to_function(function_str: str):
"""
Convert gplearn-style function string to Python function.
Takes a function string like "mul(add(X0, X1), X2)" and returns
a Python function implementing the specified behaviour,
e.g. "lambda x, y, z: (x + y) * z".
Supported functions:
add -- x + y
sub -- x - y
mul -- x * y
div -- x / y if |y| > 0.001, otherwise 1
sqrt -- sqrt(|x|)
log -- log(|x|) if |x| > 0.001, otherwise 0
inv -- 1 / x if |x| > 0.001, otherwise 0
"""
eval_globals = {
"add": lambda x, y: x + y,
"sub": lambda x, y: x - y,
"mul": lambda x, y: x * y,
"div": lambda x, y: np.divide(x, y) if np.abs(y) > 0.001 else 1.0,
"sqrt": lambda x: np.sqrt(np.abs(x)),
"log": lambda x: np.log(np.abs(x)) if np.abs(x) > 0.001 else 0.0,
"inv": lambda x: 1.0 / x if np.abs(x) > 0.001 else 0.0,
}
last_arg_index = 0
for i in range(0, 100):
if function_str.find("X{:d}".format(i)) >= 0:
last_arg_index = i
arg_list = []
for i in range(0, last_arg_index + 1):
arg_list.append("X{:d}".format(i))
eval_str = "lambda {}, *whatever: {}".format(",".join(arg_list), function_str)
logger.debug(eval_str)
return eval(eval_str, eval_globals)
class ParamFunction:
"""
A one-dimensional model function, ready for least squares optimization and similar.
Supports validity checks (e.g. if it is undefined for x <= 0) and an
error measure.
"""
def __init__(self, param_function, validation_function, num_vars):
"""
Create function object suitable for regression analysis.
This documentation assumes that 1-dimensional functions
(-> single float as model input) are used. However, n-dimensional
functions (-> list of float as model input) are also supported.
:param param_function: regression function (reg_param, model_param) -> float.
reg_param is a list of regression variable values,
model_param is the model input value (float).
Example: `lambda rp, mp: rp[0] + rp[1] * mp`
:param validation_function: function used to check whether param_function
is defined for a given model_param. Signature:
model_param -> bool
Example: `lambda mp: mp > 0`
:param num_vars: How many regression variables are used by this function,
i.e., the length of param_function's reg_param argument.
"""
self._param_function = param_function
self._validation_function = validation_function
self._num_variables = num_vars
def is_valid(self, arg: float) -> bool:
"""
Check whether the regression function is defined for the given argument.
:param arg: argument (e.g. model parameter) to check for
:returns: True iff the function is defined for `arg`
"""
return self._validation_function(arg)
def eval(self, param: list, arg: float) -> float:
"""
Evaluate regression function.
:param param: regression variable values (list of float)
:param arg: model input (float)
:returns: regression function output (float)
"""
return self._param_function(param, arg)
def error_function(self, P: list, X: float, y: float) -> float:
"""
Calculate model error.
:param P: regression variables as returned by optimization (list of float)
:param X: model input (float)
:param y: expected model output / ground truth for model input (float)
:returns: Deviation between model output and ground truth (float)
"""
return self._param_function(P, X) - y
class NormalizationFunction:
"""
Wrapper for parameter normalization functions used in YAML PTA/DFA models.
"""
def __init__(self, function_str: str):
"""
Create a new normalization function from `function_str`.
:param function_str: Function string. Must use the single argument
`param` and return a float.
"""
self._function_str = function_str
self._function = eval("lambda param: " + function_str)
def eval(self, param_value: float) -> float:
"""
Evaluate the normalization function and return its output.
:param param_value: Parameter value
"""
return self._function(param_value)
class ModelFunction:
def __init__(self):
pass
def is_predictable(self, param_list):
raise NotImplementedError
def eval(self, param_list, arg_list):
raise NotImplementedError
class StaticFunction(ModelFunction):
def __init__(self, value):
self.value = value
def is_predictable(self, param_list=None):
"""
Return whether the model function can be evaluated on the given parameter values.
For a StaticFunction, this is always the case (i.e., this function always returns true).
"""
return True
def eval(self, param_list=None, arg_list=None):
"""
Evaluate model function with specified param/arg values.
Far a Staticfunction, this is just the static value
"""
return self.value
def to_json(self):
return {"type": "static", "value": self.value}
class SplitFunction(ModelFunction):
def __init__(self, param_index, child):
self.param_index = param_index
self.child = child
def is_predictable(self, param_list):
"""
Return whether the model function can be evaluated on the given parameter values.
The first value corresponds to the lexically first model parameter, etc.
All parameters must be set, not just the ones this function depends on.
Returns False iff a parameter the function depends on is not numeric
(e.g. None).
"""
param_value = param_list[self.param_index]
if param_value not in self.child:
return False
return self.child[param_value].is_predictable(param_list)
def eval(self, param_list, arg_list=list()):
param_value = param_list[self.param_index]
return self.child[param_value].eval(param_list, arg_list)
def to_json(self):
return {
"type": "split",
"paramIndex": self.param_index,
"child": dict([[k, v.to_json()] for k, v in self.child.items()]),
}
class AnalyticFunction(ModelFunction):
"""
A multi-dimensional model function, generated from a string, which can be optimized using regression.
The function describes a single model attribute (e.g. TX duration or send(...) energy)
and how it is influenced by model parameters such as configured bit rate or
packet length.
"""
def __init__(
self,
function_str,
parameters,
num_args,
regression_args=None,
fit_by_param=None,
):
"""
Create a new AnalyticFunction object from a function string.
:param function_str: the function.
Refer to regression variables using regression_arg(123),
to parameters using parameter(name),
and to function arguments (if any) using function_arg(123).
Example: "regression_arg(0) + regression_arg(1) * parameter(txbytes)"
:param parameters: list containing the names of all model parameters,
including those not used in function_str, sorted lexically.
Sorting is mandatory, as parameter indexes (and not names) are used internally.
:param num_args: number of local function arguments, if any. Set to 0 if
the model attribute does not belong to a function or if function
arguments are not included in the model.
:param regression_args: Initial regression variable values,
both for function usage and least squares optimization.
If unset, defaults to [1, 1, 1, ...]
"""
self._parameter_names = parameters
self._num_args = num_args
self.model_function = function_str
rawfunction = function_str
self._dependson = [False] * (len(parameters) + num_args)
self.fit_success = False
self.fit_by_param = fit_by_param
if type(function_str) == str:
num_vars_re = re.compile(r"regression_arg\(([0-9]+)\)")
num_vars = max(map(int, num_vars_re.findall(function_str))) + 1
for i in range(len(parameters)):
if rawfunction.find("parameter({})".format(parameters[i])) >= 0:
self._dependson[i] = True
rawfunction = rawfunction.replace(
"parameter({})".format(parameters[i]),
"model_param[{:d}]".format(i),
)
for i in range(0, num_args):
if rawfunction.find("function_arg({:d})".format(i)) >= 0:
self._dependson[len(parameters) + i] = True
rawfunction = rawfunction.replace(
"function_arg({:d})".format(i),
"model_param[{:d}]".format(len(parameters) + i),
)
for i in range(num_vars):
rawfunction = rawfunction.replace(
"regression_arg({:d})".format(i), "reg_param[{:d}]".format(i)
)
self._function_str = rawfunction
self._function = eval("lambda reg_param, model_param: " + rawfunction)
else:
self._function_str = "raise ValueError"
self._function = function_str
if regression_args:
self.model_args = regression_args.copy()
self._fit_success = True
elif type(function_str) == str:
self.model_args = list(np.ones((num_vars)))
else:
self.model_args = []
def get_fit_data(self, by_param):
"""
Return training data suitable for scipy.optimize.least_squares.
:param by_param: measurement data, partitioned by parameter/arg values.
by_param[*] must be a list or 1-D NumPy array containing the ground truth.
The parameter values (dict keys) must be numeric for
all parameters this function depends on -- otherwise, the
corresponding data will be left out. Parameter values must be
ordered according to the order of parameter names used in
the ParamFunction constructor. Argument values (if any) always come after
parameters, in the order of their index in the function signature.
:return: (X, Y, num_valid, num_total):
X -- 2-D NumPy array of parameter combinations (model input).
First dimension is the parameter/argument index, the second
dimension contains its values.
Example: X[0] contains the first parameter's values.
Y -- 1-D NumPy array of training data (desired model output).
num_valid -- amount of distinct parameter values suitable for optimization
num_total -- total amount of distinct parameter values
"""
dimension = len(self._parameter_names) + self._num_args
X = [[] for i in range(dimension)]
Y = []
num_valid = 0
num_total = 0
for key, val in by_param.items():
if len(key) == dimension:
valid = True
num_total += 1
for i in range(dimension):
if self._dependson[i] and not is_numeric(key[i]):
valid = False
if valid:
num_valid += 1
Y.extend(val)
for i in range(dimension):
if self._dependson[i]:
X[i].extend([float(key[i])] * len(val))
else:
X[i].extend([np.nan] * len(val))
else:
logger.warning(
"Invalid parameter key length while gathering fit data. is {}, want {}.".format(
len(key), dimension
)
)
X = np.array(X)
Y = np.array(Y)
return X, Y, num_valid, num_total
def fit(self, by_param):
"""
Fit the function on measurements via least squares regression.
:param by_param: measurement data, partitioned by parameter/arg values
The ground truth is read from by_param[*],
which must be a list or 1-D NumPy array. Parameter values must be
ordered according to the parameter names in the constructor. If
argument values are present, they must come after parameter values
in the order of their appearance in the function signature.
"""
X, Y, num_valid, num_total = self.get_fit_data(by_param)
if num_valid > 2:
error_function = lambda P, X, y: self._function(P, X) - y
try:
res = optimize.least_squares(
error_function, self.model_args, args=(X, Y), xtol=2e-15
)
except ValueError as err:
logger.warning(f"Fit failed: {err} (function: {self.model_function})")
return
if res.status > 0:
self.model_args = res.x
self.fit_success = True
else:
logger.warning(
f"Fit failed: {res.message} (function: {self.model_function})"
)
else:
logger.warning("Insufficient amount of valid parameter keys, cannot fit")
def is_predictable(self, param_list):
"""
Return whether the model function can be evaluated on the given parameter values.
The first value corresponds to the lexically first model parameter, etc.
All parameters must be set, not just the ones this function depends on.
Returns False iff a parameter the function depends on is not numeric
(e.g. None).
"""
for i, param in enumerate(param_list):
if self._dependson[i] and not is_numeric(param):
return False
return True
def eval(self, param_list, arg_list=[]):
"""
Evaluate model function with specified param/arg values.
:param param_list: parameter values (list of float). First item
corresponds to lexically first parameter, etc.
:param arg_list: argument values (list of float), if arguments are used.
"""
if len(self.model_args) == 0:
return self._function(param_list, arg_list)
return self._function(self.model_args, param_list)
def to_json(self):
return {
"type": "analytic",
"functionStr": self.model_function,
"dependsOnParam": self._dependson,
"regressionModel": list(self.model_args),
}
class analytic:
"""
Utilities for analytic description of parameter-dependent model attributes and regression analysis.
provided functions:
functions -- retrieve pre-defined set of regression function candidates
function_powerset -- combine several per-parameter functions into a single AnalyticFunction
"""
_num0_8 = np.vectorize(lambda x: 8 - bin(int(x)).count("1"))
_num0_16 = np.vectorize(lambda x: 16 - bin(int(x)).count("1"))
_num1 = np.vectorize(lambda x: bin(int(x)).count("1"))
_safe_log = np.vectorize(lambda x: np.log(np.abs(x)) if np.abs(x) > 0.001 else 1.0)
_safe_inv = np.vectorize(lambda x: 1 / x if np.abs(x) > 0.001 else 1.0)
_safe_sqrt = np.vectorize(lambda x: np.sqrt(np.abs(x)))
_function_map = {
"linear": lambda x: x,
"logarithmic": np.log,
"logarithmic1": lambda x: np.log(x + 1),
"exponential": np.exp,
"square": lambda x: x ** 2,
"inverse": lambda x: 1 / x,
"sqrt": lambda x: np.sqrt(np.abs(x)),
"num0_8": _num0_8,
"num0_16": _num0_16,
"num1": _num1,
"safe_log": lambda x: np.log(np.abs(x)) if np.abs(x) > 0.001 else 1.0,
"safe_inv": lambda x: 1 / x if np.abs(x) > 0.001 else 1.0,
"safe_sqrt": lambda x: np.sqrt(np.abs(x)),
}
@staticmethod
def functions(safe_functions_enabled=False):
"""
Retrieve pre-defined set of regression function candidates.
:param safe_functions_enabled: Include "safe" variants of functions with
limited argument range, e.g. a safe
inverse which returns 1 when dividing by 0.
Returns a dict of functions which are typical for energy/timing
behaviour of embedded hardware, e.g. linear, exponential or inverse
dependency on a configuration setting/runtime variable.
Each function is a ParamFunction object. In most cases, two regression
variables are expected.
"""
functions = {
"linear": ParamFunction(
lambda reg_param, model_param: reg_param[0]
+ reg_param[1] * model_param,
lambda model_param: True,
2,
),
"logarithmic": ParamFunction(
lambda reg_param, model_param: reg_param[0]
+ reg_param[1] * np.log(model_param),
lambda model_param: model_param > 0,
2,
),
"logarithmic1": ParamFunction(
lambda reg_param, model_param: reg_param[0]
+ reg_param[1] * np.log(model_param + 1),
lambda model_param: model_param > -1,
2,
),
"exponential": ParamFunction(
lambda reg_param, model_param: reg_param[0]
+ reg_param[1] * np.exp(model_param),
lambda model_param: model_param <= 64,
2,
),
#'polynomial' : lambda reg_param, model_param: reg_param[0] + reg_param[1] * model_param + reg_param[2] * model_param ** 2,
"square": ParamFunction(
lambda reg_param, model_param: reg_param[0]
+ reg_param[1] * model_param ** 2,
lambda model_param: True,
2,
),
"inverse": ParamFunction(
lambda reg_param, model_param: reg_param[0]
+ reg_param[1] / model_param,
lambda model_param: model_param != 0,
2,
),
"sqrt": ParamFunction(
lambda reg_param, model_param: reg_param[0]
+ reg_param[1] * np.sqrt(model_param),
lambda model_param: model_param >= 0,
2,
),
"num0_8": ParamFunction(
lambda reg_param, model_param: reg_param[0]
+ reg_param[1] * analytic._num0_8(model_param),
lambda model_param: True,
2,
),
"num0_16": ParamFunction(
lambda reg_param, model_param: reg_param[0]
+ reg_param[1] * analytic._num0_16(model_param),
lambda model_param: True,
2,
),
"num1": ParamFunction(
lambda reg_param, model_param: reg_param[0]
+ reg_param[1] * analytic._num1(model_param),
lambda model_param: True,
2,
),
}
if safe_functions_enabled:
functions["safe_log"] = ParamFunction(
lambda reg_param, model_param: reg_param[0]
+ reg_param[1] * analytic._safe_log(model_param),
lambda model_param: True,
2,
)
functions["safe_inv"] = ParamFunction(
lambda reg_param, model_param: reg_param[0]
+ reg_param[1] * analytic._safe_inv(model_param),
lambda model_param: True,
2,
)
functions["safe_sqrt"] = ParamFunction(
lambda reg_param, model_param: reg_param[0]
+ reg_param[1] * analytic._safe_sqrt(model_param),
lambda model_param: True,
2,
)
return functions
@staticmethod
def _fmap(reference_type, reference_name, function_type):
"""Map arg/parameter name and best-fit function name to function text suitable for AnalyticFunction."""
ref_str = "{}({})".format(reference_type, reference_name)
if function_type == "linear":
return ref_str
if function_type == "logarithmic":
return "np.log({})".format(ref_str)
if function_type == "logarithmic1":
return "np.log({} + 1)".format(ref_str)
if function_type == "exponential":
return "np.exp({})".format(ref_str)
if function_type == "exponential":
return "np.exp({})".format(ref_str)
if function_type == "square":
return "({})**2".format(ref_str)
if function_type == "inverse":
return "1/({})".format(ref_str)
if function_type == "sqrt":
return "np.sqrt({})".format(ref_str)
return "analytic._{}({})".format(function_type, ref_str)
@staticmethod
def function_powerset(fit_results, parameter_names, num_args=0):
"""
Combine per-parameter regression results into a single multi-dimensional function.
:param fit_results: results dict. One element per parameter, each containing
a dict of the form {'best' : name of function with best fit}.
Must not include parameters which do not influence the model attribute.
Example: {'txpower' : {'best': 'exponential'}}
:param parameter_names: Parameter names, including those left
out in fit_results because they do not influence the model attribute.
Must be sorted lexically.
Example: ['bitrate', 'txpower']
:param num_args: number of local function arguments, if any. Set to 0 if
the model attribute does not belong to a function or if function
arguments are not included in the model.
Returns an AnalyticFunction instantce corresponding to the combined
function.
"""
buf = "0"
arg_idx = 0
for combination in powerset(fit_results.items()):
buf += " + regression_arg({:d})".format(arg_idx)
arg_idx += 1
for function_item in combination:
if arg_support_enabled and is_numeric(function_item[0]):
buf += " * {}".format(
analytic._fmap(
"function_arg", function_item[0], function_item[1]["best"]
)
)
else:
buf += " * {}".format(
analytic._fmap(
"parameter", function_item[0], function_item[1]["best"]
)
)
return AnalyticFunction(
buf, parameter_names, num_args, fit_by_param=fit_results
)
|