1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
|
"""
Harnesses for various types of benchmark logs.
tbd
"""
import subprocess
import re
# TODO prepare benchmark log JSON with parameters etc.
# Should be independent of PTA class, as benchmarks may also be
# generated otherwise and it should also work with AnalyticModel (which does
# not have states)
class TransitionHarness:
def __init__(self, gpio_pin = None, pta = None):
self.gpio_pin = gpio_pin
self.pta = pta
self.reset()
def reset(self):
self.traces = []
self.trace_id = 1
self.synced = False
def start_benchmark(self):
pass
def global_code(self):
ret = ''
if self.gpio_pin != None:
ret += '#define PTALOG_GPIO {}\n'.format(self.gpio_pin)
ret += '#include "object/ptalog.h"\n'
if self.gpio_pin != None:
ret += 'PTALog ptalog({});\n'.format(self.gpio_pin)
else:
ret += 'PTALog ptalog;\n'
return ret
def start_benchmark(self, benchmark_id = 0):
return 'ptalog.startBenchmark({:d});\n'.format(benchmark_id)
def start_trace(self):
self.traces.append({
'id' : self.trace_id,
'trace' : list(),
})
self.trace_id += 1
def append_state(self, state_name, param):
self.traces[-1]['trace'].append({
'name': state_name,
'isa': 'state',
'parameter': param,
})
def append_transition(self, transition_name, param, args = []):
self.traces[-1]['trace'].append({
'name': transition_name,
'isa': 'transition',
'parameter': param,
'args' : args,
})
def start_run(self):
return 'ptalog.reset();\n'
def pass_transition(self, transition_id, transition_code, transition: object = None):
ret = 'ptalog.passTransition({:d});\n'.format(transition_id)
ret += 'ptalog.startTransition();\n'
ret += '{}\n'.format(transition_code)
ret += 'ptalog.stopTransition();\n'
return ret
def stop_run(self, num_traces = 0):
return 'ptalog.dump({:d});\n'.format(num_traces)
def stop_benchmark(self):
return ''
def parser_cb(self, line):
pass
def parse_log(self, lines):
sync = False
for line in lines:
print(line)
res = re.fullmatch(r'\[PTA\] (.*=.*)', line)
if re.fullmatch(r'\[PTA\] benchmark start, id=(.*)', line):
print('> got sync')
sync = True
elif not sync:
continue
elif re.fullmatch(r'\[PTA\] trace, count=(.*)', line):
print('> got transition')
pass
elif res:
print(dict(map(lambda x: x.split('='), res.group(1).split())))
pass
class OnboardTimerHarness(TransitionHarness):
def __init__(self, counter_limits, **kwargs):
super().__init__(**kwargs)
self.trace_id = 0
self.trace_length = 0
self.one_cycle_in_us, self.one_overflow_in_us, self.counter_max_overflow = counter_limits
def global_code(self):
ret = '#include "driver/counter.h"\n'
ret += '#define PTALOG_TIMING\n'
ret += super().global_code()
return ret
def start_benchmark(self, benchmark_id = 0):
ret = 'counter.start();\n'
ret += 'counter.stop();\n'
ret += 'ptalog.passNop(counter);\n'
ret += super().start_benchmark(benchmark_id)
return ret
def pass_transition(self, transition_id, transition_code, transition: object = None):
ret = 'ptalog.passTransition({:d});\n'.format(transition_id)
ret += 'ptalog.startTransition();\n'
ret += 'counter.start();\n'
ret += '{}\n'.format(transition_code)
ret += 'counter.stop();\n'
ret += 'ptalog.stopTransition(counter);\n'
return ret
def parser_cb(self, line):
#print('[HARNESS] got line {}'.format(line))
if re.match(r'\[PTA\] benchmark start, id=(.*)', line):
self.synced = True
print('[HARNESS] synced')
if self.synced:
res = re.match(r'\[PTA\] trace=(.*) count=(.*)', line)
if res:
self.trace_id = int(res.group(1))
self.trace_length = int(res.group(2))
self.current_transition_in_trace = 0
#print('[HARNESS] trace {:d} contains {:d} transitions. Expecting {:d} transitions.'.format(self.trace_id, self.trace_length, len(self.traces[self.trace_id]['trace']) // 2))
res = re.match(r'\[PTA\] transition=(.*) cycles=(.*)/(.*)', line)
if res:
transition_id = int(res.group(1))
# TODO Handle Overflows (requires knowledge of arch-specific max cycle value)
cycles = int(res.group(2))
overflow = int(res.group(3))
if overflow >= self.counter_max_overflow:
raise RuntimeError('Counter overflow ({:d}/{:d}) in benchmark id={:d} trace={:d}: transition #{:d} (ID {:d})'.format(cycles, overflow, 0, self.trace_id, self.current_transition_in_trace, transition_id))
duration_us = cycles * self.one_cycle_in_us + overflow * self.one_overflow_in_us
# self.traces contains transitions and states, UART output only contains trnasitions -> use index * 2
try:
log_data_target = self.traces[self.trace_id]['trace'][self.current_transition_in_trace * 2]
except IndexError:
transition_name = None
if self.pta:
transition_name = self.pta.transitions[transition_id].name
print('[HARNESS] benchmark id={:d} trace={:d}: transition #{:d} (ID {:d}, name {}) is out of bounds'.format(0, self.trace_id, self.current_transition_in_trace, transition_id, transition_name))
print(' Offending line: {}'.format(line))
return
if log_data_target['isa'] != 'transition':
raise RuntimeError('Log mismatch: Expected transition, got {:s}'.format(log_data_target['isa']))
if self.pta:
transition = self.pta.transitions[transition_id]
if transition.name != log_data_target['name']:
raise RuntimeError('Log mismatch: Expected transition {:s}, got transition {:s}'.format(log_data_target['name'], transition.name))
#print('[HARNESS] Logging data for transition {}'.format(log_data_target['name']))
if 'offline_aggregates' not in log_data_target:
log_data_target['offline_aggregates'] = {
'duration' : list()
}
log_data_target['offline_aggregates']['duration'].append(duration_us)
self.current_transition_in_trace += 1
|