1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
|
#!/usr/bin/env python3
# Copyright (c) 2021 Marco Cerliani, MIT License <https://github.com/cerlymarco/linear-tree>
import numbers
import numpy as np
import scipy.sparse as sp
from copy import deepcopy
from joblib import Parallel, effective_n_jobs # , delayed
from sklearn.dummy import DummyClassifier
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.base import is_regressor
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.utils import check_array
from sklearn.utils.validation import has_fit_parameter, check_is_fitted
from ._criterion import SCORING
from ._criterion import mse, rmse, mae, poisson
from ._criterion import hamming, crossentropy
import sklearn
_sklearn_v1 = eval(sklearn.__version__.split(".")[0]) > 0
CRITERIA = {
"mse": mse,
"rmse": rmse,
"mae": mae,
"poisson": poisson,
"hamming": hamming,
"crossentropy": crossentropy,
}
#########################################################################
### remove when https://github.com/joblib/joblib/issues/1071 is fixed ###
#########################################################################
from sklearn import get_config, config_context
from functools import update_wrapper
import functools
# from sklearn.utils.fixes
def delayed(function):
"""Decorator used to capture the arguments of a function."""
@functools.wraps(function)
def delayed_function(*args, **kwargs):
return _FuncWrapper(function), args, kwargs
return delayed_function
# from sklearn.utils.fixes
class _FuncWrapper:
""" "Load the global configuration before calling the function."""
def __init__(self, function):
self.function = function
self.config = get_config()
update_wrapper(self, self.function)
def __call__(self, *args, **kwargs):
with config_context(**self.config):
return self.function(*args, **kwargs)
#########################################################################
#########################################################################
#########################################################################
def _partition_columns(columns, n_jobs):
"""Private function to partition columns splitting between jobs."""
# Compute the number of jobs
n_columns = len(columns)
n_jobs = min(effective_n_jobs(n_jobs), n_columns)
# Partition columns between jobs
n_columns_per_job = np.full(n_jobs, n_columns // n_jobs, dtype=int)
n_columns_per_job[: n_columns % n_jobs] += 1
columns_per_job = np.cumsum(n_columns_per_job)
columns_per_job = np.split(columns, columns_per_job)
columns_per_job = columns_per_job[:-1]
return n_jobs, columns_per_job
def _parallel_binning_fit(
split_feat, _self, X, y, weights, support_sample_weight, bins, loss
):
"""Private function to find the best column splittings within a job."""
n_sample, n_feat = X.shape
feval = CRITERIA[_self.criterion]
split_t = None
split_col = None
left_node = (None, None, None, None)
right_node = (None, None, None, None)
largs_left = {"classes": None}
largs_right = {"classes": None}
if n_sample < _self._min_samples_split:
return loss, split_t, split_col, left_node, right_node
for col, _bin in zip(split_feat, bins):
for q in _bin:
# create 1D bool mask for right/left children
mask = X[:, col] > q
n_left, n_right = (~mask).sum(), mask.sum()
if n_left < _self._min_samples_leaf or n_right < _self._min_samples_leaf:
continue
# create 2D bool mask for right/left children
left_mesh = np.ix_(~mask, _self._linear_features)
right_mesh = np.ix_(mask, _self._linear_features)
model_left = deepcopy(_self.base_estimator)
model_right = deepcopy(_self.base_estimator)
if hasattr(_self, "classes_"):
largs_left["classes"] = np.unique(y[~mask])
largs_right["classes"] = np.unique(y[mask])
if len(largs_left["classes"]) == 1:
model_left = DummyClassifier(strategy="most_frequent")
if len(largs_right["classes"]) == 1:
model_right = DummyClassifier(strategy="most_frequent")
if weights is None:
model_left.fit(X[left_mesh], y[~mask])
loss_left = feval(model_left, X[left_mesh], y[~mask], **largs_left)
wloss_left = loss_left * (n_left / n_sample)
model_right.fit(X[right_mesh], y[mask])
loss_right = feval(model_right, X[right_mesh], y[mask], **largs_right)
wloss_right = loss_right * (n_right / n_sample)
else:
if support_sample_weight:
model_left.fit(X[left_mesh], y[~mask], sample_weight=weights[~mask])
model_right.fit(X[right_mesh], y[mask], sample_weight=weights[mask])
else:
model_left.fit(X[left_mesh], y[~mask])
model_right.fit(X[right_mesh], y[mask])
loss_left = feval(
model_left,
X[left_mesh],
y[~mask],
weights=weights[~mask],
**largs_left
)
wloss_left = loss_left * (weights[~mask].sum() / weights.sum())
loss_right = feval(
model_right,
X[right_mesh],
y[mask],
weights=weights[mask],
**largs_right
)
wloss_right = loss_right * (weights[mask].sum() / weights.sum())
total_loss = wloss_left + wloss_right
# store if best
if total_loss < loss:
split_t = q
split_col = col
loss = total_loss
left_node = (
model_left,
loss_left,
wloss_left,
n_left,
largs_left["classes"],
)
right_node = (
model_right,
loss_right,
wloss_right,
n_right,
largs_right["classes"],
)
return loss, split_t, split_col, left_node, right_node
def _map_node(X, feat, direction, split):
"""Utility to map samples to nodes"""
if direction == "L":
mask = X[:, feat] <= split
else:
mask = X[:, feat] > split
return mask
def _predict_branch(X, branch_history, mask=None):
"""Utility to map samples to branches"""
if mask is None:
mask = np.repeat(True, X.shape[0])
for node in branch_history:
mask = np.logical_and(_map_node(X, *node), mask)
return mask
class Node:
def __init__(
self,
id=None,
threshold=[],
parent=None,
children=None,
n_samples=None,
w_loss=None,
loss=None,
model=None,
classes=None,
):
self.id = id
self.threshold = threshold
self.parent = parent
self.children = children
self.n_samples = n_samples
self.w_loss = w_loss
self.loss = loss
self.model = model
self.classes = classes
class _LinearTree(BaseEstimator):
"""Base class for Linear Tree meta-estimator.
Warning: This class should not be used directly. Use derived classes
instead.
"""
def __init__(
self,
base_estimator,
*,
criterion,
max_depth,
min_samples_split,
min_samples_leaf,
max_bins,
categorical_features,
split_features,
linear_features,
n_jobs
):
self.base_estimator = base_estimator
self.criterion = criterion
self.max_depth = max_depth
self.min_samples_split = min_samples_split
self.min_samples_leaf = min_samples_leaf
self.max_bins = max_bins
self.categorical_features = categorical_features
self.split_features = split_features
self.linear_features = linear_features
self.n_jobs = n_jobs
def _parallel_args(self):
return {}
def _split(self, X, y, bins, support_sample_weight, weights=None, loss=None):
"""Evaluate optimal splits in a given node (in a specific partition of
X and y).
Parameters
----------
X : array-like of shape (n_samples, n_features)
The training input samples.
y : array-like of shape (n_samples, )
The target values (class labels in classification, real numbers in
regression).
bins : array-like of shape (max_bins - 2, )
The bins to use to find an optimal split. Expressed as percentiles.
support_sample_weight : bool
Whether the estimator's fit method supports sample_weight.
weights : array-like of shape (n_samples, ), default=None
Sample weights. If None, then samples are equally weighted.
Note that if the base estimator does not support sample weighting,
the sample weights are still used to evaluate the splits.
loss : float, default=None
The loss of the parent node. A split is computed if the weighted
loss sum of the two children is lower than the loss of the parent.
A None value implies the first fit on all the data to evaluate
the benefits of possible future splits.
Returns
-------
self : object
"""
# Parallel loops
n_jobs, split_feat = _partition_columns(self._split_features, self.n_jobs)
# partition columns splittings between jobs
all_results = Parallel(n_jobs=n_jobs, verbose=0, **self._parallel_args())(
delayed(_parallel_binning_fit)(
feat,
self,
X,
y,
weights,
support_sample_weight,
[bins[i] for i in feat],
loss,
)
for feat in split_feat
)
# extract results from parallel loops
_losses, split_t, split_col = [], [], []
left_node, right_node = [], []
for job_res in all_results:
_losses.append(job_res[0])
split_t.append(job_res[1])
split_col.append(job_res[2])
left_node.append(job_res[3])
right_node.append(job_res[4])
# select best results
_id_best = np.argmin(_losses)
if _losses[_id_best] < loss:
split_t = split_t[_id_best]
split_col = split_col[_id_best]
left_node = left_node[_id_best]
right_node = right_node[_id_best]
else:
split_t = None
split_col = None
left_node = (None, None, None, None, None)
right_node = (None, None, None, None, None)
return split_t, split_col, left_node, right_node
def _grow(self, X, y, weights=None):
"""Grow and prune a Linear Tree from the training set (X, y).
Parameters
----------
X : array-like of shape (n_samples, n_features)
The training input samples.
y : array-like of shape (n_samples, )
The target values (class labels in classification, real numbers in
regression).
weights : array-like of shape (n_samples, ), default=None
Sample weights. If None, then samples are equally weighted.
Note that if the base estimator does not support sample weighting,
the sample weights are still used to evaluate the splits.
Returns
-------
self : object
"""
n_sample, self.n_features_in_ = X.shape
self.feature_importances_ = np.zeros((self.n_features_in_,))
# extract quantiles
bins = np.linspace(0, 1, self.max_bins)[1:-1]
bins = np.quantile(X, bins, axis=0, interpolation="midpoint")
bins = list(bins.T)
bins = [
np.unique(X[:, c]) if c in self._categorical_features else np.unique(q)
for c, q in enumerate(bins)
]
# check if base_estimator supports fitting with sample_weights
support_sample_weight = has_fit_parameter(self.base_estimator, "sample_weight")
queue = [""] # queue of the nodes to evaluate for splitting
# store the results of each node in dicts
self._nodes = {}
self._leaves = {}
# initialize first fit
largs = {"classes": None}
model = deepcopy(self.base_estimator)
if weights is None or not support_sample_weight:
model.fit(X[:, self._linear_features], y)
else:
model.fit(X[:, self._linear_features], y, sample_weight=weights)
if hasattr(self, "classes_"):
largs["classes"] = self.classes_
loss = CRITERIA[self.criterion](
model, X[:, self._linear_features], y, weights=weights, **largs
)
self._nodes[""] = Node(
id=0, n_samples=n_sample, model=model, loss=loss, classes=largs["classes"]
)
# in the beginning consider all the samples
start = np.repeat(True, n_sample)
mask = start.copy()
i = 1
while len(queue) > 0:
if weights is None:
split_t, split_col, left_node, right_node = self._split(
X[mask], y[mask], bins, support_sample_weight, loss=loss
)
else:
split_t, split_col, left_node, right_node = self._split(
X[mask],
y[mask],
bins,
support_sample_weight,
weights[mask],
loss=loss,
)
# no utility in splitting
if split_col is None or len(queue[-1]) >= self.max_depth:
self._leaves[queue[-1]] = self._nodes[queue[-1]]
del self._nodes[queue[-1]]
queue.pop()
else:
model_left, loss_left, wloss_left, n_left, class_left = left_node
model_right, loss_right, wloss_right, n_right, class_right = right_node
self.feature_importances_[split_col] += loss - wloss_left - wloss_right
self._nodes[queue[-1] + "L"] = Node(
id=i,
parent=queue[-1],
model=model_left,
loss=loss_left,
w_loss=wloss_left,
n_samples=n_left,
threshold=self._nodes[queue[-1]].threshold[:]
+ [(split_col, "L", split_t)],
)
self._nodes[queue[-1] + "R"] = Node(
id=i + 1,
parent=queue[-1],
model=model_right,
loss=loss_right,
w_loss=wloss_right,
n_samples=n_right,
threshold=self._nodes[queue[-1]].threshold[:]
+ [(split_col, "R", split_t)],
)
if hasattr(self, "classes_"):
self._nodes[queue[-1] + "L"].classes = class_left
self._nodes[queue[-1] + "R"].classes = class_right
self._nodes[queue[-1]].children = (queue[-1] + "L", queue[-1] + "R")
i += 2
q = queue[-1]
queue.pop()
queue.extend([q + "R", q + "L"])
if len(queue) > 0:
loss = self._nodes[queue[-1]].loss
mask = _predict_branch(
X, self._nodes[queue[-1]].threshold, start.copy()
)
self.node_count = i
return self
def _fit(self, X, y, sample_weight=None):
"""Build a Linear Tree of a linear estimator from the training
set (X, y).
Parameters
----------
X : array-like of shape (n_samples, n_features)
The training input samples.
y : array-like of shape (n_samples, ) or also (n_samples, n_targets) for
multitarget regression.
The target values (class labels in classification, real numbers in
regression).
sample_weight : array-like of shape (n_samples, ), default=None
Sample weights. If None, then samples are equally weighted.
Note that if the base estimator does not support sample weighting,
the sample weights are still used to evaluate the splits.
Returns
-------
self : object
"""
n_sample, n_feat = X.shape
if isinstance(self.min_samples_split, numbers.Integral):
if self.min_samples_split < 6:
raise ValueError(
"min_samples_split must be an integer greater than 5 or "
"a float in (0.0, 1.0); got the integer {}".format(
self.min_samples_split
)
)
self._min_samples_split = self.min_samples_split
else:
if not 0.0 < self.min_samples_split < 1.0:
raise ValueError(
"min_samples_split must be an integer greater than 5 or "
"a float in (0.0, 1.0); got the float {}".format(
self.min_samples_split
)
)
self._min_samples_split = int(np.ceil(self.min_samples_split * n_sample))
self._min_samples_split = max(6, self._min_samples_split)
if isinstance(self.min_samples_leaf, numbers.Integral):
if self.min_samples_leaf < 3:
raise ValueError(
"min_samples_leaf must be an integer greater than 2 or "
"a float in (0.0, 1.0); got the integer {}".format(
self.min_samples_leaf
)
)
self._min_samples_leaf = self.min_samples_leaf
else:
if not 0.0 < self.min_samples_leaf < 1.0:
raise ValueError(
"min_samples_leaf must be an integer greater than 2 or "
"a float in (0.0, 1.0); got the float {}".format(
self.min_samples_leaf
)
)
self._min_samples_leaf = int(np.ceil(self.min_samples_leaf * n_sample))
self._min_samples_leaf = max(3, self._min_samples_leaf)
if not 1 <= self.max_depth <= 20:
raise ValueError("max_depth must be an integer in [1, 20].")
if not 10 <= self.max_bins <= 120:
raise ValueError("max_bins must be an integer in [10, 120].")
if not hasattr(self.base_estimator, "fit_intercept"):
raise ValueError(
"Only linear models are accepted as base_estimator. "
"Select one from linear_model class of scikit-learn."
)
if self.categorical_features is not None:
cat_features = np.unique(self.categorical_features)
if not issubclass(cat_features.dtype.type, numbers.Integral):
raise ValueError(
"No valid specification of categorical columns. "
"Only a scalar, list or array-like of integers is allowed."
)
if (cat_features < 0).any() or (cat_features >= n_feat).any():
raise ValueError(
"Categorical features must be in [0, {}].".format(n_feat - 1)
)
if len(cat_features) == n_feat:
raise ValueError(
"Only categorical features detected. "
"No features available for fitting."
)
else:
cat_features = []
self._categorical_features = cat_features
if self.split_features is not None:
split_features = np.unique(self.split_features)
if not issubclass(split_features.dtype.type, numbers.Integral):
raise ValueError(
"No valid specification of split_features. "
"Only a scalar, list or array-like of integers is allowed."
)
if (split_features < 0).any() or (split_features >= n_feat).any():
raise ValueError(
"Splitting features must be in [0, {}].".format(n_feat - 1)
)
else:
split_features = np.arange(n_feat)
self._split_features = split_features
if self.linear_features is not None:
linear_features = np.unique(self.linear_features)
if not issubclass(linear_features.dtype.type, numbers.Integral):
raise ValueError(
"No valid specification of linear_features. "
"Only a scalar, list or array-like of integers is allowed."
)
if (linear_features < 0).any() or (linear_features >= n_feat).any():
raise ValueError(
"Linear features must be in [0, {}].".format(n_feat - 1)
)
if np.isin(linear_features, cat_features).any():
raise ValueError("Linear features cannot be categorical features.")
else:
linear_features = np.setdiff1d(np.arange(n_feat), cat_features)
self._linear_features = linear_features
self._grow(X, y, sample_weight)
normalizer = np.sum(self.feature_importances_)
if normalizer > 0:
self.feature_importances_ /= normalizer
return self
def summary(self, feature_names=None, only_leaves=False, max_depth=None):
"""Return a summary of nodes created from model fitting.
Parameters
----------
feature_names : array-like of shape (n_features, ), default=None
Names of each of the features. If None, generic names
will be used (“X[0]”, “X[1]”, …).
only_leaves : bool, default=False
Store only information of leaf nodes.
max_depth : int, default=None
The maximum depth of the representation. If None, the tree
is fully generated.
Returns
-------
summary : nested dict
The keys are the integer map of each node.
The values are dicts containing information for that node:
- 'col' (^): column used for splitting;
- 'th' (^): threshold value used for splitting in the
selected column;
- 'loss': loss computed at node level. Weighted sum of
children' losses if it is a splitting node;
- 'samples': number of samples in the node. Sum of children'
samples if it is a split node;
- 'children' (^): integer mapping of possible children nodes;
- 'models': fitted linear models built in each split.
Single model if it is leaf node;
- 'classes' (^^): target classes detected in the split.
Available only for LinearTreeClassifier.
(^): Only for split nodes.
(^^): Only for leaf nodes.
"""
check_is_fitted(self, attributes="_nodes")
if max_depth is None:
max_depth = 20
if max_depth < 1:
raise ValueError("max_depth must be > 0, got {}".format(max_depth))
summary = {}
if len(self._nodes) > 0 and not only_leaves:
if feature_names is not None and len(feature_names) != self.n_features_in_:
raise ValueError(
"feature_names must contain {} elements, got {}".format(
self.n_features_in_, len(feature_names)
)
)
if feature_names is None:
feature_names = np.arange(self.n_features_in_)
for n, N in self._nodes.items():
if len(n) >= max_depth:
continue
cl, cr = N.children
Cl = self._nodes[cl] if cl in self._nodes else self._leaves[cl]
Cr = self._nodes[cr] if cr in self._nodes else self._leaves[cr]
summary[N.id] = {
"col": feature_names[Cl.threshold[-1][0]],
"th": round(Cl.threshold[-1][-1], 4),
"loss": round(Cl.w_loss + Cr.w_loss, 4),
"samples": Cl.n_samples + Cr.n_samples,
"children": (Cl.id, Cr.id),
"models": (Cl.model, Cr.model),
}
for l, L in self._leaves.items():
if len(l) > max_depth:
continue
summary[L.id] = {
"loss": round(L.loss, 4),
"samples": L.n_samples,
"models": L.model,
}
if hasattr(self, "classes_"):
summary[L.id]["classes"] = L.classes
return summary
def apply(self, X):
"""Return the index of the leaf that each sample is predicted as.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Samples.
Returns
-------
X_leaves : array-like of shape (n_samples, )
For each datapoint x in X, return the index of the leaf x
ends up in. Leaves are numbered within
``[0; n_nodes)``, possibly with gaps in the
numbering.
"""
check_is_fitted(self, attributes="_nodes")
X = check_array(X, accept_sparse=False, dtype=None, force_all_finite=False)
self._check_n_features(X, reset=False)
X_leaves = np.zeros(X.shape[0], dtype="int64")
for L in self._leaves.values():
mask = _predict_branch(X, L.threshold)
if (~mask).all():
continue
X_leaves[mask] = L.id
return X_leaves
def decision_path(self, X):
"""Return the decision path in the tree.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Samples.
Returns
-------
indicator : sparse matrix of shape (n_samples, n_nodes)
Return a node indicator CSR matrix where non zero elements
indicates that the samples goes through the nodes.
"""
check_is_fitted(self, attributes="_nodes")
X = check_array(X, accept_sparse=False, dtype=None, force_all_finite=False)
self._check_n_features(X, reset=False)
indicator = np.zeros((X.shape[0], self.node_count), dtype="int64")
for L in self._leaves.values():
mask = _predict_branch(X, L.threshold)
if (~mask).all():
continue
n = L.id
p = L.parent
paths_id = [n]
while p is not None:
n = self._nodes[p].id
p = self._nodes[p].parent
paths_id.append(n)
indicator[np.ix_(mask, paths_id)] = 1
return sp.csr_matrix(indicator)
def model_to_dot(self, feature_names=None, max_depth=None):
"""Convert a fitted Linear Tree model to dot format.
It results in ModuleNotFoundError if graphviz or pydot are not available.
When installing graphviz make sure to add it to the system path.
Parameters
----------
feature_names : array-like of shape (n_features, ), default=None
Names of each of the features. If None, generic names
will be used (“X[0]”, “X[1]”, …).
max_depth : int, default=None
The maximum depth of the representation. If None, the tree
is fully generated.
Returns
-------
graph : pydot.Dot instance
Return an instance representing the Linear Tree. Splitting nodes have
a rectangular shape while leaf nodes have a circular one.
"""
import pydot
summary = self.summary(feature_names=feature_names, max_depth=max_depth)
graph = pydot.Dot("linear_tree", graph_type="graph")
# create nodes
for n in summary:
if "col" in summary[n]:
if isinstance(summary[n]["col"], str):
msg = "id_node: {}\n{} <= {}\nloss: {:.4f}\nsamples: {}"
else:
msg = "id_node: {}\nX[{}] <= {}\nloss: {:.4f}\nsamples: {}"
msg = msg.format(
n,
summary[n]["col"],
summary[n]["th"],
summary[n]["loss"],
summary[n]["samples"],
)
graph.add_node(pydot.Node(n, label=msg, shape="rectangle"))
for c in summary[n]["children"]:
if c not in summary:
graph.add_node(pydot.Node(c, label="...", shape="rectangle"))
else:
msg = "id_node: {}\nloss: {:.4f}\nsamples: {}".format(
n, summary[n]["loss"], summary[n]["samples"]
)
graph.add_node(pydot.Node(n, label=msg))
# add edges
for n in summary:
if "children" in summary[n]:
for c in summary[n]["children"]:
graph.add_edge(pydot.Edge(n, c))
return graph
def plot_model(self, feature_names=None, max_depth=None):
"""Convert a fitted Linear Tree model to dot format and display it.
It results in ModuleNotFoundError if graphviz or pydot are not available.
When installing graphviz make sure to add it to the system path.
Parameters
----------
feature_names : array-like of shape (n_features, ), default=None
Names of each of the features. If None, generic names
will be used (“X[0]”, “X[1]”, …).
max_depth : int, default=None
The maximum depth of the representation. If None, the tree
is fully generated.
Returns
-------
A Jupyter notebook Image object if Jupyter is installed.
This enables in-line display of the model plots in notebooks.
Splitting nodes have a rectangular shape while leaf nodes
have a circular one.
"""
from IPython.display import Image
graph = self.model_to_dot(feature_names=feature_names, max_depth=max_depth)
return Image(graph.create_png())
class _LinearBoosting(TransformerMixin, BaseEstimator):
"""Base class for Linear Boosting meta-estimator.
Warning: This class should not be used directly. Use derived classes
instead.
"""
def __init__(
self,
base_estimator,
*,
loss,
n_estimators,
max_depth,
min_samples_split,
min_samples_leaf,
min_weight_fraction_leaf,
max_features,
random_state,
max_leaf_nodes,
min_impurity_decrease,
ccp_alpha
):
self.base_estimator = base_estimator
self.loss = loss
self.n_estimators = n_estimators
self.max_depth = max_depth
self.min_samples_split = min_samples_split
self.min_samples_leaf = min_samples_leaf
self.min_weight_fraction_leaf = min_weight_fraction_leaf
self.max_features = max_features
self.random_state = random_state
self.max_leaf_nodes = max_leaf_nodes
self.min_impurity_decrease = min_impurity_decrease
self.ccp_alpha = ccp_alpha
def _fit(self, X, y, sample_weight=None):
"""Build a Linear Boosting from the training set (X, y).
Parameters
----------
X : array-like of shape (n_samples, n_features)
The training input samples.
y : array-like of shape (n_samples, ) or also (n_samples, n_targets) for
multitarget regression.
The target values (class labels in classification, real numbers in
regression).
sample_weight : array-like of shape (n_samples, ), default=None
Sample weights.
Returns
-------
self : object
"""
if not hasattr(self.base_estimator, "fit_intercept"):
raise ValueError(
"Only linear models are accepted as base_estimator. "
"Select one from linear_model class of scikit-learn."
)
if self.n_estimators <= 0:
raise ValueError(
"n_estimators must be an integer greater than 0 but "
"got {}".format(self.n_estimators)
)
n_sample, self.n_features_in_ = X.shape
self._trees = []
self._leaves = []
for i in range(self.n_estimators):
estimator = deepcopy(self.base_estimator)
estimator.fit(X, y, sample_weight=sample_weight)
if self.loss == "entropy":
pred = estimator.predict_proba(X)
else:
pred = estimator.predict(X)
if hasattr(self, "classes_"):
resid = SCORING[self.loss](y, pred, self.classes_)
else:
resid = SCORING[self.loss](y, pred)
if resid.ndim > 1:
resid = resid.mean(1)
criterion = "squared_error" if _sklearn_v1 else "mse"
tree = DecisionTreeRegressor(
criterion=criterion,
max_depth=self.max_depth,
min_samples_split=self.min_samples_split,
min_samples_leaf=self.min_samples_leaf,
min_weight_fraction_leaf=self.min_weight_fraction_leaf,
max_features=self.max_features,
random_state=self.random_state,
max_leaf_nodes=self.max_leaf_nodes,
min_impurity_decrease=self.min_impurity_decrease,
ccp_alpha=self.ccp_alpha,
)
tree.fit(X, resid, sample_weight=sample_weight, check_input=False)
self._trees.append(tree)
pred_tree = np.abs(tree.predict(X, check_input=False))
worst_pred = np.max(pred_tree)
self._leaves.append(worst_pred)
pred_tree = (pred_tree == worst_pred).astype(np.float32)
pred_tree = pred_tree.reshape(-1, 1)
X = np.concatenate([X, pred_tree], axis=1)
self.base_estimator_ = deepcopy(self.base_estimator)
self.base_estimator_.fit(X, y, sample_weight=sample_weight)
if hasattr(self.base_estimator_, "coef_"):
self.coef_ = self.base_estimator_.coef_
if hasattr(self.base_estimator_, "intercept_"):
self.intercept_ = self.base_estimator_.intercept_
self.n_features_out_ = X.shape[1]
return self
def transform(self, X):
"""Transform dataset.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Input data to be transformed. Use ``dtype=np.float32`` for maximum
efficiency.
Returns
-------
X_transformed : ndarray of shape (n_samples, n_out)
Transformed dataset.
`n_out` is equal to `n_features` + `n_estimators`
"""
check_is_fitted(self, attributes="base_estimator_")
X = check_array(X, dtype=np.float32, accept_sparse=False)
self._check_n_features(X, reset=False)
for tree, leaf in zip(self._trees, self._leaves):
pred_tree = np.abs(tree.predict(X, check_input=False))
pred_tree = (pred_tree == leaf).astype(np.float32)
pred_tree = pred_tree.reshape(-1, 1)
X = np.concatenate([X, pred_tree], axis=1)
return X
class _LinearForest(BaseEstimator):
"""Base class for Linear Forest meta-estimator.
Warning: This class should not be used directly. Use derived classes
instead.
"""
def __init__(
self,
base_estimator,
*,
n_estimators,
max_depth,
min_samples_split,
min_samples_leaf,
min_weight_fraction_leaf,
max_features,
max_leaf_nodes,
min_impurity_decrease,
bootstrap,
oob_score,
n_jobs,
random_state,
ccp_alpha,
max_samples
):
self.base_estimator = base_estimator
self.n_estimators = n_estimators
self.max_depth = max_depth
self.min_samples_split = min_samples_split
self.min_samples_leaf = min_samples_leaf
self.min_weight_fraction_leaf = min_weight_fraction_leaf
self.max_features = max_features
self.max_leaf_nodes = max_leaf_nodes
self.min_impurity_decrease = min_impurity_decrease
self.bootstrap = bootstrap
self.oob_score = oob_score
self.n_jobs = n_jobs
self.random_state = random_state
self.ccp_alpha = ccp_alpha
self.max_samples = max_samples
def _sigmoid(self, y):
"""Expit function (a.k.a. logistic sigmoid).
Parameters
----------
y : array-like of shape (n_samples, )
The array to apply expit to element-wise.
Returns
-------
y : array-like of shape (n_samples, )
Expits.
"""
return np.exp(y) / (1 + np.exp(y))
def _inv_sigmoid(self, y):
"""Logit function.
Parameters
----------
y : array-like of shape (n_samples, )
The array to apply logit to element-wise.
Returns
-------
y : array-like of shape (n_samples, )
Logits.
"""
y = y.clip(1e-3, 1 - 1e-3)
return np.log(y / (1 - y))
def _fit(self, X, y, sample_weight=None):
"""Build a Linear Boosting from the training set (X, y).
Parameters
----------
X : array-like of shape (n_samples, n_features)
The training input samples.
y : array-like of shape (n_samples, ) or also (n_samples, n_targets) for
multitarget regression.
The target values (class labels in classification, real numbers in
regression).
sample_weight : array-like of shape (n_samples, ), default=None
Sample weights.
Returns
-------
self : object
"""
if not hasattr(self.base_estimator, "fit_intercept"):
raise ValueError(
"Only linear models are accepted as base_estimator. "
"Select one from linear_model class of scikit-learn."
)
if not is_regressor(self.base_estimator):
raise ValueError("Select a regressor linear model as base_estimator.")
n_sample, self.n_features_in_ = X.shape
if hasattr(self, "classes_"):
class_to_int = dict(map(reversed, enumerate(self.classes_)))
y = np.array([class_to_int[i] for i in y])
y = self._inv_sigmoid(y)
self.base_estimator_ = deepcopy(self.base_estimator)
self.base_estimator_.fit(X, y, sample_weight)
resid = y - self.base_estimator_.predict(X)
criterion = "squared_error" if _sklearn_v1 else "mse"
self.forest_estimator_ = RandomForestRegressor(
n_estimators=self.n_estimators,
criterion=criterion,
max_depth=self.max_depth,
min_samples_split=self.min_samples_split,
min_samples_leaf=self.min_samples_leaf,
min_weight_fraction_leaf=self.min_weight_fraction_leaf,
max_features=self.max_features,
max_leaf_nodes=self.max_leaf_nodes,
min_impurity_decrease=self.min_impurity_decrease,
bootstrap=self.bootstrap,
oob_score=self.oob_score,
n_jobs=self.n_jobs,
random_state=self.random_state,
ccp_alpha=self.ccp_alpha,
max_samples=self.max_samples,
)
self.forest_estimator_.fit(X, resid, sample_weight)
if hasattr(self.base_estimator_, "coef_"):
self.coef_ = self.base_estimator_.coef_
if hasattr(self.base_estimator_, "intercept_"):
self.intercept_ = self.base_estimator_.intercept_
self.feature_importances_ = self.forest_estimator_.feature_importances_
return self
def apply(self, X):
"""Apply trees in the forest to X, return leaf indices.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input samples.
Returns
-------
X_leaves : ndarray of shape (n_samples, n_estimators)
For each datapoint x in X and for each tree in the forest,
return the index of the leaf x ends up in.
"""
check_is_fitted(self, attributes="base_estimator_")
return self.forest_estimator_.apply(X)
def decision_path(self, X):
"""Return the decision path in the forest.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The input samples.
Returns
-------
indicator : sparse matrix of shape (n_samples, n_nodes)
Return a node indicator matrix where non zero elements indicates
that the samples goes through the nodes. The matrix is of CSR
format.
n_nodes_ptr : ndarray of shape (n_estimators + 1, )
The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]]
gives the indicator value for the i-th estimator.
"""
check_is_fitted(self, attributes="base_estimator_")
return self.forest_estimator_.decision_path(X)
|