summaryrefslogtreecommitdiff
path: root/lib/lineartree/lineartree.py
blob: 0c8f2d9474f379945c58bf4efced9ec64e7e5276 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
#!/usr/bin/env python3
# Copyright (c) 2021 Marco Cerliani, MIT License <https://github.com/cerlymarco/linear-tree>

import numpy as np

from sklearn.base import ClassifierMixin, RegressorMixin

from sklearn.utils import check_array
from sklearn.utils.validation import check_is_fitted, _check_sample_weight

from ._classes import _predict_branch
from ._classes import _LinearTree, _LinearBoosting, _LinearForest


class LinearTreeRegressor(_LinearTree, RegressorMixin):
    """A Linear Tree Regressor.

    A Linear Tree Regressor is a meta-estimator that combine the learning
    ability of Decision Tree and the predictive power of Linear Models.
    Like in tree-based algorithms, the received data are splitted according
    simple decision rules. The goodness of slits is evaluated in gain terms
    fitting linear models in each node. This implies that the models in the
    leaves are linear instead of constant approximations like in classical
    Decision Tree.

    Parameters
    ----------
    base_estimator : object
        The base estimator to fit on dataset splits.
        The base estimator must be a sklearn.linear_model.

    criterion : {"mse", "rmse", "mae", "poisson"}, default="mse"
        The function to measure the quality of a split. "poisson"
        requires ``y >= 0``.

    max_depth : int, default=5
        The maximum depth of the tree considering only the splitting nodes.
        A higher value implies a higher training time.

    min_samples_split : int or float, default=6
        The minimum number of samples required to split an internal node.
        The minimum valid number of samples in each node is 6.
        A lower value implies a higher training time.
        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

    min_samples_leaf : int or float, default=0.1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least `min_samples_leaf` training samples in each of the left and
        right branches.
        The minimum valid number of samples in each leaf is 3.
        A lower value implies a higher training time.
        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

    max_bins : int, default=25
        The maximum number of bins to use to search the optimal split in each
        feature. Features with a small number of unique values may use less than
        ``max_bins`` bins. Must be lower than 120 and larger than 10.
        A higher value implies a higher training time.

    categorical_features : int or array-like of int, default=None
        Indicates the categorical features.
        All categorical indices must be in `[0, n_features)`.
        Categorical features are used for splits but are not used in
        model fitting.
        More categorical features imply a higher training time.
        - None : no feature will be considered categorical.
        - integer array-like : integer indices indicating categorical
          features.
        - integer : integer index indicating a categorical
          feature.

    split_features : int or array-like of int, default=None
        Defines which features can be used to split on.
        All split feature indices must be in `[0, n_features)`.
        - None : All features will be used for splitting.
        - integer array-like : integer indices indicating splitting features.
        - integer : integer index indicating a single splitting feature.

    linear_features : int or array-like of int, default=None
        Defines which features are used for the linear model in the leaves.
        All linear feature indices must be in `[0, n_features)`.
        - None : All features except those in `categorical_features`
          will be used in the leaf models.
        - integer array-like : integer indices indicating features to
          be used in the leaf models.
        - integer : integer index indicating a single feature to be used
          in the leaf models.

    n_jobs : int, default=None
        The number of jobs to run in parallel for model fitting.
        ``None`` means 1 using one processor. ``-1`` means using all
        processors.

    Attributes
    ----------
    n_features_in_ : int
        The number of features when :meth:`fit` is performed.

    feature_importances_ : ndarray of shape (n_features, )
        Normalized total reduction of criteria by splitting features.

    n_targets_ : int
        The number of targets when :meth:`fit` is performed.

    Examples
    --------
    >>> from sklearn.linear_model import LinearRegression
    >>> from lineartree import LinearTreeRegressor
    >>> from sklearn.datasets import make_regression
    >>> X, y = make_regression(n_samples=100, n_features=4,
    ...                        n_informative=2, n_targets=1,
    ...                        random_state=0, shuffle=False)
    >>> regr = LinearTreeRegressor(base_estimator=LinearRegression())
    >>> regr.fit(X, y)
    >>> regr.predict([[0, 0, 0, 0]])
    array([8.8817842e-16])
    """

    def __init__(
        self,
        base_estimator,
        *,
        criterion="mse",
        max_depth=5,
        min_samples_split=6,
        min_samples_leaf=0.1,
        max_bins=25,
        categorical_features=None,
        split_features=None,
        linear_features=None,
        n_jobs=None
    ):

        self.base_estimator = base_estimator
        self.criterion = criterion
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.max_bins = max_bins
        self.categorical_features = categorical_features
        self.split_features = split_features
        self.linear_features = linear_features
        self.n_jobs = n_jobs

    def fit(self, X, y, sample_weight=None):
        """Build a Linear Tree of a linear estimator from the training
        set (X, y).

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The training input samples.

        y : array-like of shape (n_samples, ) or (n_samples, n_targets)
            Target values.

        sample_weight : array-like of shape (n_samples, ), default=None
            Sample weights. If None, then samples are equally weighted.
            Note that if the base estimator does not support sample weighting,
            the sample weights are still used to evaluate the splits.

        Returns
        -------
        self : object
        """
        reg_criterions = ("mse", "rmse", "mae", "poisson")

        if self.criterion not in reg_criterions:
            raise ValueError(
                "Regression tasks support only criterion in {}, "
                "got '{}'.".format(reg_criterions, self.criterion)
            )

        # Convert data (X is required to be 2d and indexable)
        X, y = self._validate_data(
            X,
            y,
            accept_sparse=False,
            dtype=None,
            force_all_finite=False,
            multi_output=True,
        )
        if sample_weight is not None:
            sample_weight = _check_sample_weight(sample_weight, X, dtype=None)

        y_shape = np.shape(y)
        self.n_targets_ = y_shape[1] if len(y_shape) > 1 else 1
        if self.n_targets_ < 2:
            y = y.ravel()
        self._fit(X, y, sample_weight)

        return self

    def predict(self, X):
        """Predict regression target for X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Samples.

        Returns
        -------
        pred : ndarray of shape (n_samples, ) or also (n_samples, n_targets) if
            multitarget regression.
            The predicted values.
        """
        check_is_fitted(self, attributes="_nodes")

        X = check_array(X, accept_sparse=False, dtype=None, force_all_finite=False)
        self._check_n_features(X, reset=False)

        if self.n_targets_ > 1:
            pred = np.zeros((X.shape[0], self.n_targets_))
        else:
            pred = np.zeros(X.shape[0])

        for L in self._leaves.values():

            mask = _predict_branch(X, L.threshold)
            if (~mask).all():
                continue

            pred[mask] = L.model.predict(X[np.ix_(mask, self._linear_features)])

        return pred


class LinearTreeClassifier(_LinearTree, ClassifierMixin):
    """A Linear Tree Classifier.

    A Linear Tree Classifier is a meta-estimator that combine the learning
    ability of Decision Tree and the predictive power of Linear Models.
    Like in tree-based algorithms, the received data are splitted according
    simple decision rules. The goodness of slits is evaluated in gain terms
    fitting linear models in each node. This implies that the models in the
    leaves are linear instead of constant approximations like in classical
    Decision Tree.

    Parameters
    ----------
    base_estimator : object
        The base estimator to fit on dataset splits.
        The base estimator must be a sklearn.linear_model.
        The selected base estimator is automatically substituted by a
        `~sklearn.dummy.DummyClassifier` when a dataset split
        is composed of unique labels.

    criterion : {"hamming", "crossentropy"}, default="hamming"
        The function to measure the quality of a split. `"crossentropy"`
        can be used only if `base_estimator` has `predict_proba` method.

    max_depth : int, default=5
        The maximum depth of the tree considering only the splitting nodes.
        A higher value implies a higher training time.

    min_samples_split : int or float, default=6
        The minimum number of samples required to split an internal node.
        The minimum valid number of samples in each node is 6.
        A lower value implies a higher training time.
        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

    min_samples_leaf : int or float, default=0.1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least `min_samples_leaf` training samples in each of the left and
        right branches.
        The minimum valid number of samples in each leaf is 3.
        A lower value implies a higher training time.
        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

    max_bins : int, default=25
        The maximum number of bins to use to search the optimal split in each
        feature. Features with a small number of unique values may use less than
        ``max_bins`` bins. Must be lower than 120 and larger than 10.
        A higher value implies a higher training time.

    categorical_features : int or array-like of int, default=None
        Indicates the categorical features.
        All categorical indices must be in `[0, n_features)`.
        Categorical features are used for splits but are not used in
        model fitting.
        More categorical features imply a higher training time.
        - None : no feature will be considered categorical.
        - integer array-like : integer indices indicating categorical
          features.
        - integer : integer index indicating a categorical
          feature.

    split_features : int or array-like of int, default=None
        Defines which features can be used to split on.
        All split feature indices must be in `[0, n_features)`.
        - None : All features will be used for splitting.
        - integer array-like : integer indices indicating splitting features.
        - integer : integer index indicating a single splitting feature.

    linear_features : int or array-like of int, default=None
        Defines which features are used for the linear model in the leaves.
        All linear feature indices must be in `[0, n_features)`.
        - None : All features except those in `categorical_features`
          will be used in the leaf models.
        - integer array-like : integer indices indicating features to
          be used in the leaf models.
        - integer : integer index indicating a single feature to be used
          in the leaf models.

    n_jobs : int, default=None
        The number of jobs to run in parallel for model fitting.
        ``None`` means 1 using one processor. ``-1`` means using all
        processors.

    Attributes
    ----------
    n_features_in_ : int
        The number of features when :meth:`fit` is performed.

    feature_importances_ : ndarray of shape (n_features, )
        Normalized total reduction of criteria by splitting features.

    classes_ : ndarray of shape (n_classes, )
        A list of class labels known to the classifier.

    Examples
    --------
    >>> from sklearn.linear_model import RidgeClassifier
    >>> from lineartree import LinearTreeClassifier
    >>> from sklearn.datasets import make_classification
    >>> X, y = make_classification(n_samples=100, n_features=4,
    ...                            n_informative=2, n_redundant=0,
    ...                            random_state=0, shuffle=False)
    >>> clf = LinearTreeClassifier(base_estimator=RidgeClassifier())
    >>> clf.fit(X, y)
    >>> clf.predict([[0, 0, 0, 0]])
    array([1])
    """

    def __init__(
        self,
        base_estimator,
        *,
        criterion="hamming",
        max_depth=5,
        min_samples_split=6,
        min_samples_leaf=0.1,
        max_bins=25,
        categorical_features=None,
        split_features=None,
        linear_features=None,
        n_jobs=None
    ):

        self.base_estimator = base_estimator
        self.criterion = criterion
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.max_bins = max_bins
        self.categorical_features = categorical_features
        self.split_features = split_features
        self.linear_features = linear_features
        self.n_jobs = n_jobs

    def fit(self, X, y, sample_weight=None):
        """Build a Linear Tree of a linear estimator from the training
        set (X, y).

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The training input samples.

        y : array-like of shape (n_samples, )
            Target values.

        sample_weight : array-like of shape (n_samples, ), default=None
            Sample weights. If None, then samples are equally weighted.
            Note that if the base estimator does not support sample weighting,
            the sample weights are still used to evaluate the splits.

        Returns
        -------
        self : object
        """
        clas_criterions = ("hamming", "crossentropy")

        if self.criterion not in clas_criterions:
            raise ValueError(
                "Classification tasks support only criterion in {}, "
                "got '{}'.".format(clas_criterions, self.criterion)
            )

        if (
            not hasattr(self.base_estimator, "predict_proba")
            and self.criterion == "crossentropy"
        ):
            raise ValueError(
                "The 'crossentropy' criterion requires a base_estimator "
                "with predict_proba method."
            )

        # Convert data (X is required to be 2d and indexable)
        X, y = self._validate_data(
            X,
            y,
            accept_sparse=False,
            dtype=None,
            force_all_finite=False,
            multi_output=False,
        )
        if sample_weight is not None:
            sample_weight = _check_sample_weight(sample_weight, X, dtype=None)

        self.classes_ = np.unique(y)
        self._fit(X, y, sample_weight)

        return self

    def predict(self, X):
        """Predict class for X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Samples.

        Returns
        -------
        pred : ndarray of shape (n_samples, )
            The predicted classes.
        """
        check_is_fitted(self, attributes="_nodes")

        X = check_array(X, accept_sparse=False, dtype=None, force_all_finite=False)
        self._check_n_features(X, reset=False)

        pred = np.empty(X.shape[0], dtype=self.classes_.dtype)

        for L in self._leaves.values():

            mask = _predict_branch(X, L.threshold)
            if (~mask).all():
                continue

            pred[mask] = L.model.predict(X[np.ix_(mask, self._linear_features)])

        return pred

    def predict_proba(self, X):
        """Predict class probabilities for X.

        If base estimators do not implement a ``predict_proba`` method,
        then the one-hot encoding of the predicted class is returned.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Samples.

        Returns
        -------
        pred : ndarray of shape (n_samples, n_classes)
            The class probabilities of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
        """
        check_is_fitted(self, attributes="_nodes")

        X = check_array(X, accept_sparse=False, dtype=None, force_all_finite=False)
        self._check_n_features(X, reset=False)

        pred = np.zeros((X.shape[0], len(self.classes_)))

        if hasattr(self.base_estimator, "predict_proba"):
            for L in self._leaves.values():

                mask = _predict_branch(X, L.threshold)
                if (~mask).all():
                    continue

                pred[
                    np.ix_(mask, np.isin(self.classes_, L.classes))
                ] = L.model.predict_proba(X[np.ix_(mask, self._linear_features)])

        else:
            pred_class = self.predict(X)
            class_to_int = dict(map(reversed, enumerate(self.classes_)))
            pred_class = np.array([class_to_int[i] for i in pred_class])
            pred[np.arange(X.shape[0]), pred_class] = 1

        return pred

    def predict_log_proba(self, X):
        """Predict class log-probabilities for X.

        If base estimators do not implement a ``predict_log_proba`` method,
        then the logarithm of the one-hot encoded predicted class is returned.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Samples.

        Returns
        -------
        pred : ndarray of shape (n_samples, n_classes)
            The class log-probabilities of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
        """
        return np.log(self.predict_proba(X))


class LinearBoostRegressor(_LinearBoosting, RegressorMixin):
    """A Linear Boosting Regressor.

    A Linear Boosting Regressor is an iterative meta-estimator that starts
    with a linear regressor, and model the residuals through decision trees.
    At each iteration, the path leading to highest error (i.e. the worst leaf)
    is added as a new binary variable to the base model. This kind of Linear
    Boosting can be considered as an improvement over general linear models
    since it enables incorporating non-linear features by residuals modeling.

    Parameters
    ----------
    base_estimator : object
        The base estimator iteratively fitted.
        The base estimator must be a sklearn.linear_model.

    loss : {"linear", "square", "absolute", "exponential"}, default="linear"
        The function used to calculate the residuals of each sample.

    n_estimators : int, default=10
        The number of boosting stages to perform. It corresponds to the number
        of the new features generated.

    max_depth : int, default=3
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_features : int, float or {"auto", "sqrt", "log2"}, default=None
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a fraction and
          `int(max_features * n_features)` features are considered at each
          split.
        - If "auto", then `max_features=n_features`.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    random_state : int, RandomState instance or None, default=None
        Controls the randomness of the estimator.

    max_leaf_nodes : int, default=None
        Grow a tree with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details.

    Attributes
    ----------
    n_features_in_ : int
        The number of features when :meth:`fit` is performed.

    n_features_out_ : int
        The total number of features used to fit the base estimator in the
        last iteration. The number of output features is equal to the sum
        of n_features_in_ and n_estimators.

    coef_ : array of shape (n_features_out_, ) or (n_targets, n_features_out_)
        Estimated coefficients for the linear regression problem.
        If multiple targets are passed during the fit (y 2D), this is a
        2D array of shape (n_targets, n_features_out_), while if only one target
        is passed, this is a 1D array of length n_features_out_.

    intercept_ : float or array of shape (n_targets, )
        Independent term in the linear model. Set to 0 if `fit_intercept = False`
        in `base_estimator`

    Examples
    --------
    >>> from sklearn.linear_model import LinearRegression
    >>> from lineartree import LinearBoostRegressor
    >>> from sklearn.datasets import make_regression
    >>> X, y = make_regression(n_samples=100, n_features=4,
    ...                        n_informative=2, n_targets=1,
    ...                        random_state=0, shuffle=False)
    >>> regr = LinearBoostRegressor(base_estimator=LinearRegression())
    >>> regr.fit(X, y)
    >>> regr.predict([[0, 0, 0, 0]])
    array([8.8817842e-16])

    References
    ----------
    Explainable boosted linear regression for time series forecasting.
    Authors: Igor Ilic, Berk Gorgulu, Mucahit Cevik, Mustafa Gokce Baydogan.
    (https://arxiv.org/abs/2009.09110)
    """

    def __init__(
        self,
        base_estimator,
        *,
        loss="linear",
        n_estimators=10,
        max_depth=3,
        min_samples_split=2,
        min_samples_leaf=1,
        min_weight_fraction_leaf=0.0,
        max_features=None,
        random_state=None,
        max_leaf_nodes=None,
        min_impurity_decrease=0.0,
        ccp_alpha=0.0
    ):

        self.base_estimator = base_estimator
        self.loss = loss
        self.n_estimators = n_estimators
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.max_features = max_features
        self.random_state = random_state
        self.max_leaf_nodes = max_leaf_nodes
        self.min_impurity_decrease = min_impurity_decrease
        self.ccp_alpha = ccp_alpha

    def fit(self, X, y, sample_weight=None):
        """Build a Linear Boosting from the training set (X, y).

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The training input samples.

        y : array-like of shape (n_samples, ) or (n_samples, n_targets)
            Target values.

        sample_weight : array-like of shape (n_samples, ), default=None
            Sample weights.

        Returns
        -------
        self : object
        """
        reg_losses = ("linear", "square", "absolute", "exponential")

        if self.loss not in reg_losses:
            raise ValueError(
                "Regression tasks support only loss in {}, "
                "got '{}'.".format(reg_losses, self.loss)
            )

        # Convert data (X is required to be 2d and indexable)
        X, y = self._validate_data(
            X, y, accept_sparse=False, dtype=np.float32, multi_output=True
        )
        if sample_weight is not None:
            sample_weight = _check_sample_weight(sample_weight, X, dtype=None)

        y_shape = np.shape(y)
        n_targets = y_shape[1] if len(y_shape) > 1 else 1
        if n_targets < 2:
            y = y.ravel()
        self._fit(X, y, sample_weight)

        return self

    def predict(self, X):
        """Predict regression target for X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Samples.

        Returns
        -------
        pred : ndarray of shape (n_samples, ) or also (n_samples, n_targets) if
            multitarget regression.
            The predicted values.
        """
        check_is_fitted(self, attributes="base_estimator_")

        return self.base_estimator_.predict(self.transform(X))


class LinearBoostClassifier(_LinearBoosting, ClassifierMixin):
    """A Linear Boosting Classifier.

    A Linear Boosting Classifier is an iterative meta-estimator that starts
    with a linear classifier, and model the residuals through decision trees.
    At each iteration, the path leading to highest error (i.e. the worst leaf)
    is added as a new binary variable to the base model. This kind of Linear
    Boosting can be considered as an improvement over general linear models
    since it enables incorporating non-linear features by residuals modeling.

    Parameters
    ----------
    base_estimator : object
        The base estimator iteratively fitted.
        The base estimator must be a sklearn.linear_model.

    loss : {"hamming", "entropy"}, default="entropy"
        The function used to calculate the residuals of each sample.
        `"entropy"` can be used only if `base_estimator` has `predict_proba`
        method.

    n_estimators : int, default=10
        The number of boosting stages to perform. It corresponds to the number
        of the new features generated.

    max_depth : int, default=3
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_features : int, float or {"auto", "sqrt", "log2"}, default=None
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a fraction and
          `int(max_features * n_features)` features are considered at each
          split.
        - If "auto", then `max_features=n_features`.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    random_state : int, RandomState instance or None, default=None
        Controls the randomness of the estimator.

    max_leaf_nodes : int, default=None
        Grow a tree with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details.

    Attributes
    ----------
    n_features_in_ : int
        The number of features when :meth:`fit` is performed.

    n_features_out_ : int
        The total number of features used to fit the base estimator in the
        last iteration. The number of output features is equal to the sum
        of n_features_in_ and n_estimators.

    coef_ : ndarray of shape (1, n_features_out_) or (n_classes, n_features_out_)
        Coefficient of the features in the decision function.

    intercept_ : float or array of shape (n_classes, )
        Independent term in the linear model. Set to 0 if `fit_intercept = False`
        in `base_estimator`

    classes_ : ndarray of shape (n_classes, )
        A list of class labels known to the classifier.

    Examples
    --------
    >>> from sklearn.linear_model import RidgeClassifier
    >>> from lineartree import LinearBoostClassifier
    >>> from sklearn.datasets import make_classification
    >>> X, y = make_classification(n_samples=100, n_features=4,
    ...                            n_informative=2, n_redundant=0,
    ...                            random_state=0, shuffle=False)
    >>> clf = LinearBoostClassifier(base_estimator=RidgeClassifier())
    >>> clf.fit(X, y)
    >>> clf.predict([[0, 0, 0, 0]])
    array([1])

    References
    ----------
    Explainable boosted linear regression for time series forecasting.
    Authors: Igor Ilic, Berk Gorgulu, Mucahit Cevik, Mustafa Gokce Baydogan.
    (https://arxiv.org/abs/2009.09110)
    """

    def __init__(
        self,
        base_estimator,
        *,
        loss="hamming",
        n_estimators=10,
        max_depth=3,
        min_samples_split=2,
        min_samples_leaf=1,
        min_weight_fraction_leaf=0.0,
        max_features=None,
        random_state=None,
        max_leaf_nodes=None,
        min_impurity_decrease=0.0,
        ccp_alpha=0.0
    ):

        self.base_estimator = base_estimator
        self.loss = loss
        self.n_estimators = n_estimators
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.max_features = max_features
        self.random_state = random_state
        self.max_leaf_nodes = max_leaf_nodes
        self.min_impurity_decrease = min_impurity_decrease
        self.ccp_alpha = ccp_alpha

    def fit(self, X, y, sample_weight=None):
        """Build a Linear Boosting from the training set (X, y).

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The training input samples.

        y : array-like of shape (n_samples, )
            Target values.

        sample_weight : array-like of shape (n_samples, ), default=None
            Sample weights.

        Returns
        -------
        self : object
        """
        clas_losses = ("hamming", "entropy")

        if self.loss not in clas_losses:
            raise ValueError(
                "Classification tasks support only loss in {}, "
                "got '{}'.".format(clas_losses, self.loss)
            )

        if not hasattr(self.base_estimator, "predict_proba") and self.loss == "entropy":
            raise ValueError(
                "The 'entropy' loss requires a base_estimator "
                "with predict_proba method."
            )

        # Convert data (X is required to be 2d and indexable)
        X, y = self._validate_data(
            X, y, accept_sparse=False, dtype=np.float32, multi_output=False
        )
        if sample_weight is not None:
            sample_weight = _check_sample_weight(sample_weight, X, dtype=None)

        self.classes_ = np.unique(y)
        self._fit(X, y, sample_weight)

        return self

    def predict(self, X):
        """Predict class for X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Samples.

        Returns
        -------
        pred : ndarray of shape (n_samples, )
            The predicted classes.
        """
        check_is_fitted(self, attributes="base_estimator_")

        return self.base_estimator_.predict(self.transform(X))

    def predict_proba(self, X):
        """Predict class probabilities for X.

        If base estimators do not implement a ``predict_proba`` method,
        then the one-hot encoding of the predicted class is returned.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Samples.

        Returns
        -------
        pred : ndarray of shape (n_samples, n_classes)
            The class probabilities of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
        """
        if hasattr(self.base_estimator, "predict_proba"):
            check_is_fitted(self, attributes="base_estimator_")
            pred = self.base_estimator_.predict_proba(self.transform(X))

        else:
            pred_class = self.predict(X)
            pred = np.zeros((pred_class.shape[0], len(self.classes_)))
            class_to_int = dict(map(reversed, enumerate(self.classes_)))
            pred_class = np.array([class_to_int[v] for v in pred_class])
            pred[np.arange(pred_class.shape[0]), pred_class] = 1

        return pred

    def predict_log_proba(self, X):
        """Predict class log-probabilities for X.

        If base estimators do not implement a ``predict_log_proba`` method,
        then the logarithm of the one-hot encoded predicted class is returned.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Samples.

        Returns
        -------
        pred : ndarray of shape (n_samples, n_classes)
            The class log-probabilities of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
        """
        return np.log(self.predict_proba(X))


class LinearForestClassifier(_LinearForest, ClassifierMixin):
    """ "A Linear Forest Classifier.

    Linear forests generalizes the well known random forests by combining
    linear models with the same random forests.
    The key idea of linear forests is to use the strength of linear models
    to improve the nonparametric learning ability of tree-based algorithms.
    Firstly, a linear model is fitted on the whole dataset, then a random
    forest is trained on the same dataset but using the residuals of the
    previous steps as target. The final predictions are the sum of the raw
    linear predictions and the residuals modeled by the random forest.

    For classification tasks the same approach used in regression context
    is adopted. The binary targets are transformed into logits using the
    inverse sigmoid function. A linear regression is fitted. A random forest
    regressor is trained to approximate the residulas from logits and linear
    predictions. Finally the sigmoid of the combinded predictions are taken
    to obtain probabilities.
    The multi-label scenario is carried out using OneVsRestClassifier.

    Parameters
    ----------
    base_estimator : object
        The linear estimator fitted on the raw target.
        The linear estimator must be a regressor from sklearn.linear_model.

    n_estimators : int, default=100
        The number of trees in the forest.

    max_depth : int, default=None
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_features : {"auto", "sqrt", "log2"}, int or float, default="auto"
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a fraction and
          `round(max_features * n_features)` features are considered at each
          split.
        - If "auto", then `max_features=n_features`.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    max_leaf_nodes : int, default=None
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

    bootstrap : bool, default=True
        Whether bootstrap samples are used when building trees. If False, the
        whole dataset is used to build each tree.

    oob_score : bool, default=False
        Whether to use out-of-bag samples to estimate the generalization score.
        Only available if bootstrap=True.

    n_jobs : int, default=None
        The number of jobs to run in parallel. :meth:`fit`, :meth:`predict`,
        :meth:`decision_path` and :meth:`apply` are all parallelized over the
        trees. ``None`` means 1 unless in a :obj:`joblib.parallel_backend`
        context. ``-1`` means using all processors.

    random_state : int, RandomState instance or None, default=None
        Controls both the randomness of the bootstrapping of the samples used
        when building trees (if ``bootstrap=True``) and the sampling of the
        features to consider when looking for the best split at each node
        (if ``max_features < n_features``).

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details.

    max_samples : int or float, default=None
        If bootstrap is True, the number of samples to draw from X
        to train each base estimator.

        - If None (default), then draw `X.shape[0]` samples.
        - If int, then draw `max_samples` samples.
        - If float, then draw `max_samples * X.shape[0]` samples. Thus,
          `max_samples` should be in the interval `(0, 1]`.

    Attributes
    ----------
    n_features_in_ : int
        The number of features when :meth:`fit` is performed.

    feature_importances_ : ndarray of shape (n_features, )
        The impurity-based feature importances.
        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

    coef_ : ndarray of shape (1, n_features_out_)
        Coefficient of the features in the decision function.

    intercept_ : float
        Independent term in the linear model. Set to 0 if `fit_intercept = False`
        in `base_estimator`.

    classes_ : ndarray of shape (n_classes, )
        A list of class labels known to the classifier.

    base_estimator_ : object
        A fitted linear model instance.

    forest_estimator_ : object
        A fitted random forest instance.

    Examples
    --------
    >>> from sklearn.linear_model import LinearRegression
    >>> from lineartree import LinearForestClassifier
    >>> from sklearn.datasets import make_classification
    >>> X, y = make_classification(n_samples=100, n_classes=2, n_features=4,
    ...                            n_informative=2, n_redundant=0,
    ...                            random_state=0, shuffle=False)
    >>> clf = LinearForestClassifier(base_estimator=LinearRegression())
    >>> clf.fit(X, y)
    >>> clf.predict([[0, 0, 0, 0]])
    array([1])

    References
    ----------
    Regression-Enhanced Random Forests.
    Authors: Haozhe Zhang, Dan Nettleton, Zhengyuan Zhu.
    (https://arxiv.org/abs/1904.10416)
    """

    def __init__(
        self,
        base_estimator,
        *,
        n_estimators=100,
        max_depth=None,
        min_samples_split=2,
        min_samples_leaf=1,
        min_weight_fraction_leaf=0.0,
        max_features="auto",
        max_leaf_nodes=None,
        min_impurity_decrease=0.0,
        bootstrap=True,
        oob_score=False,
        n_jobs=None,
        random_state=None,
        ccp_alpha=0.0,
        max_samples=None
    ):

        self.base_estimator = base_estimator
        self.n_estimators = n_estimators
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.max_features = max_features
        self.max_leaf_nodes = max_leaf_nodes
        self.min_impurity_decrease = min_impurity_decrease
        self.bootstrap = bootstrap
        self.oob_score = oob_score
        self.n_jobs = n_jobs
        self.random_state = random_state
        self.ccp_alpha = ccp_alpha
        self.max_samples = max_samples

    def fit(self, X, y, sample_weight=None):
        """Build a Linear Forest from the training set (X, y).

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The training input samples.

        y : array-like of shape (n_samples, ) or (n_samples, n_targets)
            Target values.

        sample_weight : array-like of shape (n_samples, ), default=None
            Sample weights.

        Returns
        -------
        self : object
        """
        # Convert data (X is required to be 2d and indexable)
        X, y = self._validate_data(
            X, y, accept_sparse=True, dtype=None, multi_output=False
        )
        if sample_weight is not None:
            sample_weight = _check_sample_weight(sample_weight, X, dtype=None)

        self.classes_ = np.unique(y)
        if len(self.classes_) > 2:
            raise ValueError(
                "LinearForestClassifier supports only binary classification task. "
                "To solve a multi-lable classification task use "
                "LinearForestClassifier with OneVsRestClassifier from sklearn."
            )

        self._fit(X, y, sample_weight)

        return self

    def decision_function(self, X):
        """Predict confidence scores for samples.

        The confidence score for a sample is proportional to the signed
        distance of that sample to the hyperplane.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Samples.

        Returns
        -------
        pred : ndarray of shape (n_samples, )
            Confidence scores.
            Confidence score for self.classes_[1] where >0 means this
            class would be predicted.
        """
        check_is_fitted(self, attributes="base_estimator_")
        X = check_array(X, dtype=None, accept_sparse=False)
        self._check_n_features(X, reset=False)

        linear_pred = self.base_estimator_.predict(X)
        forest_pred = self.forest_estimator_.predict(X)

        return linear_pred + forest_pred

    def predict(self, X):
        """Predict class for X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Samples.

        Returns
        -------
        pred : ndarray of shape (n_samples, )
            The predicted classes.
        """
        pred = self.decision_function(X)
        pred_class = (self._sigmoid(pred) > 0.5).astype(int)
        int_to_class = dict(enumerate(self.classes_))
        pred_class = np.array([int_to_class[i] for i in pred_class])

        return pred_class

    def predict_proba(self, X):
        """Predict class probabilities for X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Samples.

        Returns
        -------
        proba : ndarray of shape (n_samples, n_classes)
            The class probabilities of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
        """
        check_is_fitted(self, attributes="base_estimator_")
        X = check_array(X, dtype=None, accept_sparse=False)
        self._check_n_features(X, reset=False)

        pred = self._sigmoid(self.base_estimator_.predict(X))
        proba = np.zeros((X.shape[0], 2))
        proba[:, 0] = 1 - pred
        proba[:, 1] = pred

        return proba

    def predict_log_proba(self, X):
        """Predict class log-probabilities for X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Samples.

        Returns
        -------
        pred : ndarray of shape (n_samples, n_classes)
            The class log-probabilities of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
        """
        return np.log(self.predict_proba(X))


class LinearForestRegressor(_LinearForest, RegressorMixin):
    """ "A Linear Forest Regressor.

    Linear forests generalizes the well known random forests by combining
    linear models with the same random forests.
    The key idea of linear forests is to use the strength of linear models
    to improve the nonparametric learning ability of tree-based algorithms.
    Firstly, a linear model is fitted on the whole dataset, then a random
    forest is trained on the same dataset but using the residuals of the
    previous steps as target. The final predictions are the sum of the raw
    linear predictions and the residuals modeled by the random forest.

    Parameters
    ----------
    base_estimator : object
        The linear estimator fitted on the raw target.
        The linear estimator must be a regressor from sklearn.linear_model.

    n_estimators : int, default=100
        The number of trees in the forest.

    max_depth : int, default=None
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_features : {"auto", "sqrt", "log2"}, int or float, default="auto"
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a fraction and
          `round(max_features * n_features)` features are considered at each
          split.
        - If "auto", then `max_features=n_features`.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    max_leaf_nodes : int, default=None
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

    bootstrap : bool, default=True
        Whether bootstrap samples are used when building trees. If False, the
        whole dataset is used to build each tree.

    oob_score : bool, default=False
        Whether to use out-of-bag samples to estimate the generalization score.
        Only available if bootstrap=True.

    n_jobs : int, default=None
        The number of jobs to run in parallel. :meth:`fit`, :meth:`predict`,
        :meth:`decision_path` and :meth:`apply` are all parallelized over the
        trees. ``None`` means 1 unless in a :obj:`joblib.parallel_backend`
        context. ``-1`` means using all processors.

    random_state : int, RandomState instance or None, default=None
        Controls both the randomness of the bootstrapping of the samples used
        when building trees (if ``bootstrap=True``) and the sampling of the
        features to consider when looking for the best split at each node
        (if ``max_features < n_features``).

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details.

    max_samples : int or float, default=None
        If bootstrap is True, the number of samples to draw from X
        to train each base estimator.

        - If None (default), then draw `X.shape[0]` samples.
        - If int, then draw `max_samples` samples.
        - If float, then draw `max_samples * X.shape[0]` samples. Thus,
          `max_samples` should be in the interval `(0, 1]`.

    Attributes
    ----------
    n_features_in_ : int
        The number of features when :meth:`fit` is performed.

    feature_importances_ : ndarray of shape (n_features, )
        The impurity-based feature importances.
        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

    coef_ : array of shape (n_features, ) or (n_targets, n_features)
        Estimated coefficients for the linear regression problem.
        If multiple targets are passed during the fit (y 2D), this is a
        2D array of shape (n_targets, n_features), while if only one target
        is passed, this is a 1D array of length n_features.

    intercept_ : float or array of shape (n_targets,)
        Independent term in the linear model. Set to 0 if `fit_intercept = False`
        in `base_estimator`.

    base_estimator_ : object
        A fitted linear model instance.

    forest_estimator_ : object
        A fitted random forest instance.

    Examples
    --------
    >>> from sklearn.linear_model import LinearRegression
    >>> from lineartree import LinearForestRegressor
    >>> from sklearn.datasets import make_regression
    >>> X, y = make_regression(n_samples=100, n_features=4,
    ...                        n_informative=2, n_targets=1,
    ...                        random_state=0, shuffle=False)
    >>> regr = LinearForestRegressor(base_estimator=LinearRegression())
    >>> regr.fit(X, y)
    >>> regr.predict([[0, 0, 0, 0]])
    array([8.8817842e-16])

    References
    ----------
    Regression-Enhanced Random Forests.
    Authors: Haozhe Zhang, Dan Nettleton, Zhengyuan Zhu.
    (https://arxiv.org/abs/1904.10416)
    """

    def __init__(
        self,
        base_estimator,
        *,
        n_estimators=100,
        max_depth=None,
        min_samples_split=2,
        min_samples_leaf=1,
        min_weight_fraction_leaf=0.0,
        max_features="auto",
        max_leaf_nodes=None,
        min_impurity_decrease=0.0,
        bootstrap=True,
        oob_score=False,
        n_jobs=None,
        random_state=None,
        ccp_alpha=0.0,
        max_samples=None
    ):

        self.base_estimator = base_estimator
        self.n_estimators = n_estimators
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.max_features = max_features
        self.max_leaf_nodes = max_leaf_nodes
        self.min_impurity_decrease = min_impurity_decrease
        self.bootstrap = bootstrap
        self.oob_score = oob_score
        self.n_jobs = n_jobs
        self.random_state = random_state
        self.ccp_alpha = ccp_alpha
        self.max_samples = max_samples

    def fit(self, X, y, sample_weight=None):
        """Build a Linear Forest from the training set (X, y).

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The training input samples.

        y : array-like of shape (n_samples, ) or (n_samples, n_targets)
            Target values.

        sample_weight : array-like of shape (n_samples, ), default=None
            Sample weights.

        Returns
        -------
        self : object
        """
        # Convert data (X is required to be 2d and indexable)
        X, y = self._validate_data(
            X, y, accept_sparse=True, dtype=None, multi_output=True
        )
        if sample_weight is not None:
            sample_weight = _check_sample_weight(sample_weight, X, dtype=None)

        y_shape = np.shape(y)
        n_targets = y_shape[1] if len(y_shape) > 1 else 1
        if n_targets < 2:
            y = y.ravel()
        self._fit(X, y, sample_weight)

        return self

    def predict(self, X):
        """Predict regression target for X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Samples.

        Returns
        -------
        pred : ndarray of shape (n_samples, ) or also (n_samples, n_targets) if
            multitarget regression.
            The predicted values.
        """
        check_is_fitted(self, attributes="base_estimator_")
        X = check_array(X, dtype=None, accept_sparse=False)
        self._check_n_features(X, reset=False)

        linear_pred = self.base_estimator_.predict(X)
        forest_pred = self.forest_estimator_.predict(X)

        return linear_pred + forest_pred