1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
|
#!/usr/bin/env python3
import io
import json
import logging
import numpy as np
import os
import re
import struct
import tarfile
import hashlib
from multiprocessing import Pool
from dfatool.utils import NpEncoder, running_mean, soft_cast_int
from .energytrace import (
EnergyTrace,
EnergyTraceWithBarcode,
EnergyTraceWithLogicAnalyzer,
EnergyTraceWithTimer,
)
from .keysight import DLog, KeysightCSV
from .plain import Logfile, CSVfile
from .mimosa import MIMOSA
logger = logging.getLogger(__name__)
def _preprocess_mimosa(measurement):
setup = measurement["setup"]
mim = MIMOSA(
float(setup["mimosa_voltage"]),
int(setup["mimosa_shunt"]),
with_traces=measurement["with_traces"],
)
try:
charges, triggers = mim.load_data(measurement["content"])
trigidx = mim.trigger_edges(triggers)
except EOFError as e:
mim.errors.append("MIMOSA logfile error: {}".format(e))
trigidx = list()
if len(trigidx) == 0:
mim.errors.append("MIMOSA log has no triggers")
return {
"fileno": measurement["fileno"],
"info": measurement["info"],
"errors": mim.errors,
"repeat_id": measurement["repeat_id"],
"valid": False,
}
cal_edges = mim.calibration_edges(
running_mean(mim.currents_nocal(charges[0 : trigidx[0]]), 10)
)
calfunc, caldata = mim.calibration_function(charges, cal_edges)
vcalfunc = np.vectorize(calfunc, otypes=[np.float64])
traces = mim.analyze_states(charges, trigidx, vcalfunc)
# the last (v0) / first (v1) state is not part of the benchmark
traces.pop(measurement["pop"])
mim.validate(
len(trigidx), traces, measurement["expected_trace"], setup["state_duration"]
)
processed_data = {
"triggers": len(trigidx),
"first_trig": trigidx[0] * 10,
"calibration": caldata,
"energy_trace": traces,
"errors": mim.errors,
"valid": len(mim.errors) == 0,
}
for key in ["fileno", "info", "repeat_id"]:
processed_data[key] = measurement[key]
return processed_data
def _preprocess_etlog(measurement):
setup = measurement["setup"]
energytrace_class = EnergyTraceWithBarcode
if measurement["sync_mode"] == "la":
energytrace_class = EnergyTraceWithLogicAnalyzer
elif measurement["sync_mode"] == "timer":
energytrace_class = EnergyTraceWithTimer
etlog = energytrace_class(
float(setup["voltage"]),
int(setup["state_duration"]),
measurement["transition_names"],
with_traces=measurement["with_traces"],
)
states_and_transitions = list()
try:
etlog.load_data(measurement["content"])
states_and_transitions = etlog.analyze_states(
measurement["expected_trace"], measurement["repeat_id"]
)
except EOFError as e:
etlog.errors.append("EnergyTrace logfile error: {}".format(e))
except RuntimeError as e:
etlog.errors.append("EnergyTrace loader error: {}".format(e))
processed_data = {
"fileno": measurement["fileno"],
"repeat_id": measurement["repeat_id"],
"info": measurement["info"],
"energy_trace": states_and_transitions,
"valid": len(etlog.errors) == 0,
"errors": etlog.errors,
}
return processed_data
def _preprocess_dlog(measurement):
setup = measurement["setup"]
dlog = DLog(
float(setup["voltage"]),
int(setup["state_duration"]),
with_traces=measurement["with_traces"],
)
states_and_transitions = list()
try:
dlog.load_data(measurement["content"])
states_and_transitions = dlog.analyze_states(
measurement["expected_trace"], measurement["repeat_id"]
)
except EOFError as e:
dlog.errors.append("DLog file error: {}".format(e))
except RuntimeError as e:
dlog.errors.append("DLog loader error: {}".format(e))
processed_data = {
"fileno": measurement["fileno"],
"repeat_id": measurement["repeat_id"],
"info": measurement["info"],
"energy_trace": states_and_transitions,
"valid": len(dlog.errors) == 0,
"errors": dlog.errors,
}
return processed_data
class TimingData:
"""
Loader for timing model traces measured with on-board timers using `harness.OnboardTimerHarness`.
Excpets a specific trace format and UART log output (as produced by
generate-dfa-benchmark.py). Prunes states from output. (TODO)
"""
def __init__(self, filenames):
"""
Create a new TimingData object.
Each filenames element corresponds to a measurement run.
"""
self.filenames = filenames.copy()
# holds the benchmark plan (dfa traces) for each series of benchmark runs.
# Note that a single entry typically has more than one corresponding mimosa/energytrace benchmark files,
# as benchmarks are run repeatedly to distinguish between random and parameter-dependent measurement effects.
self.traces_by_fileno = []
self.setup_by_fileno = []
self.preprocessed = False
self.version = 0
def _concatenate_analyzed_traces(self):
self.traces = []
for trace_group in self.traces_by_fileno:
for trace in trace_group:
# TimingHarness logs states, but does not aggregate any data for them at the moment -> throw all states away
transitions = list(
filter(lambda x: x["isa"] == "transition", trace["trace"])
)
self.traces.append({"id": trace["id"], "trace": transitions})
for i, trace in enumerate(self.traces):
trace["orig_id"] = trace["id"]
trace["id"] = i
for log_entry in trace["trace"]:
paramkeys = sorted(log_entry["parameter"].keys())
if "param" not in log_entry["offline_aggregates"]:
log_entry["offline_aggregates"]["param"] = list()
if "duration" in log_entry["offline_aggregates"]:
for i in range(len(log_entry["offline_aggregates"]["duration"])):
paramvalues = list()
for paramkey in paramkeys:
if type(log_entry["parameter"][paramkey]) is list:
paramvalues.append(
soft_cast_int(log_entry["parameter"][paramkey][i])
)
else:
paramvalues.append(
soft_cast_int(log_entry["parameter"][paramkey])
)
if "args" in log_entry:
paramvalues.extend(map(soft_cast_int, log_entry["args"]))
log_entry["offline_aggregates"]["param"].append(paramvalues)
def _preprocess_0(self):
for filename in self.filenames:
with open(filename, "r") as f:
log_data = json.load(f)
self.traces_by_fileno.extend(log_data["traces"])
self._concatenate_analyzed_traces()
def get_preprocessed_data(self):
"""
Return a list of DFA traces annotated with timing and parameter data.
Suitable for the PTAModel constructor.
See PTAModel(...) docstring for format details.
"""
if self.preprocessed:
return self.traces
if self.version == 0:
self._preprocess_0()
self.preprocessed = True
return self.traces
def sanity_check_aggregate(aggregate):
for key in aggregate:
if "param" not in aggregate[key]:
raise RuntimeError("aggregate[{}][param] does not exist".format(key))
if "attributes" not in aggregate[key]:
raise RuntimeError("aggregate[{}][attributes] does not exist".format(key))
for attribute in aggregate[key]["attributes"]:
if attribute not in aggregate[key]:
raise RuntimeError(
"aggregate[{}][{}] does not exist, even though it is contained in aggregate[{}][attributes]".format(
key, attribute, key
)
)
param_len = len(aggregate[key]["param"])
attr_len = len(aggregate[key][attribute])
if param_len != attr_len:
raise RuntimeError(
"parameter mismatch: len(aggregate[{}][param]) == {} != len(aggregate[{}][{}]) == {}".format(
key, param_len, key, attribute, attr_len
)
)
def assert_legacy_compatibility(f1, t1, f2, t2):
expected_param_names = sorted(
t1["expected_trace"][0]["trace"][0]["parameter"].keys()
)
for run in t2["expected_trace"]:
for state_or_trans in run["trace"]:
actual_param_names = sorted(state_or_trans["parameter"].keys())
if actual_param_names != expected_param_names:
err = f"parameters in {f1} and {f2} are incompatible: {expected_param_names} ≠ {actual_param_names}"
logger.error(err)
raise ValueError(err)
def assert_ptalog_compatibility(f1, pl1, f2, pl2):
param1 = pl1["pta"]["parameters"]
param2 = pl2["pta"]["parameters"]
if param1 != param2:
err = f"parameters in {f1} and {f2} are incompatible: {param1} ≠ {param2}"
logger.error(err)
raise ValueError(err)
states1 = list(sorted(pl1["pta"]["state"].keys()))
states2 = list(sorted(pl2["pta"]["state"].keys()))
if states1 != states2:
err = f"states in {f1} and {f2} differ: {states1} ≠ {states2}"
logger.warning(err)
transitions1 = list(sorted(map(lambda t: t["name"], pl1["pta"]["transitions"])))
transitions2 = list(sorted(map(lambda t: t["name"], pl1["pta"]["transitions"])))
if transitions1 != transitions2:
err = f"transitions in {f1} and {f2} differ: {transitions1} ≠ {transitions2}"
logger.warning(err)
class RawData:
"""
Loader for hardware model traces measured with MIMOSA.
Expects a specific trace format and UART log output (as produced by the
dfatool benchmark generator). Loads data, prunes bogus measurements, and
provides preprocessed data suitable for PTAModel. Results are cached on the
file system, making subsequent loads near-instant.
"""
def __init__(self, filenames, with_traces=False, skip_cache=False):
"""
Create a new RawData object.
Each filename element corresponds to a measurement run.
It must be a tar archive with the following contents:
Version 0:
* `setup.json`: measurement setup. Must contain the keys `state_duration` (how long each state is active, in ms),
`mimosa_voltage` (voltage applied to dut, in V), and `mimosa_shunt` (shunt value, in Ohm)
* `src/apps/DriverEval/DriverLog.json`: PTA traces and parameters for this benchmark.
Layout: List of traces, each trace has an 'id' (numeric, starting with 1) and 'trace' (list of states and transitions) element.
Each trace has an even number of elements, starting with the first state (usually `UNINITIALIZED`) and ending with a transition.
Each state/transition must have the members `.parameter` (parameter values, empty string or None if unknown), `.isa` ("state" or "transition") and `.name`.
Each transition must additionally contain `.plan.level` ("user" or "epilogue").
Example: `[ {"id": 1, "trace": [ {"parameter": {...}, "isa": "state", "name": "UNINITIALIZED"}, ...] }, ... ]
* At least one `*.mim` file. Each file corresponds to a single execution of the entire benchmark (i.e., all runs described in DriverLog.json) and starts with a MIMOSA Autocal calibration sequence.
MIMOSA files are parsed by the `MIMOSA` class.
Version 1:
* `ptalog.json`: measurement setup and traces. Contents:
`.opt.sleep`: state duration
`.opt.pta`: PTA
`.opt.traces`: list of sub-benchmark traces (the benchmark may have been split due to code size limitations). Each item is a list of traces as returned by `harness.traces`:
`.opt.traces[]`: List of traces. Each trace has an 'id' (numeric, starting with 1) and 'trace' (list of states and transitions) element.
Each state/transition must have the members '`parameter` (dict with normalized parameter values), `.isa` ("state" or "transition") and `.name`
Each transition must additionally contain `.args`
`.opt.files`: list of coresponding MIMOSA measurements.
`.opt.files[]` = ['abc123.mim', ...]
`.opt.configs`: ....
* MIMOSA log files (`*.mim`) as specified in `.opt.files`
Version 2:
* `ptalog.json`: measurement setup and traces. Contents:
`.opt.sleep`: state duration
`.opt.pta`: PTA
`.opt.traces`: list of sub-benchmark traces (the benchmark may have been split due to code size limitations). Each item is a list of traces as returned by `harness.traces`:
`.opt.traces[]`: List of traces. Each trace has an 'id' (numeric, starting with 1) and 'trace' (list of states and transitions) element.
Each state/transition must have the members '`parameter` (dict with normalized parameter values), `.isa` ("state" or "transition") and `.name`
Each transition must additionally contain `.args` and `.duration`
* `.duration`: list of durations, one per repetition
`.opt.files`: list of coresponding EnergyTrace measurements.
`.opt.files[]` = ['abc123.etlog', ...]
`.opt.configs`: ....
* EnergyTrace log files (`*.etlog`) as specified in `.opt.files`
If a cached result for a file is available, it is loaded and the file
is not preprocessed, unless `with_traces` is set.
tbd
"""
self.with_traces = with_traces
self.input_filenames = filenames.copy()
self.filenames = list()
self.traces_by_fileno = list()
self.setup_by_fileno = list()
self.version = 0
self.preprocessed = False
self._parameter_names = None
self.ignore_clipping = False
self.pta = None
self.ptalog = None
with tarfile.open(filenames[0]) as tf:
for member in tf.getmembers():
if member.name == "ptalog.json" and self.version == 0:
self.version = 1
# or greater, if *.etlog / *.dlog exist
elif ".etlog" in member.name:
self.version = 2
break
elif ".dlog" in member.name:
self.version = 3
break
if self.version >= 1:
self.ptalog = json.load(tf.extractfile(tf.getmember("ptalog.json")))
self.pta = self.ptalog["pta"]
if self.ptalog and len(filenames) > 1:
for filename in filenames[1:]:
with tarfile.open(filename) as tf:
new_ptalog = json.load(tf.extractfile(tf.getmember("ptalog.json")))
assert_ptalog_compatibility(
filenames[0], self.ptalog, filename, new_ptalog
)
self.ptalog["files"].extend(new_ptalog["files"])
self.set_cache_file()
if not with_traces and not skip_cache:
self.load_cache()
def set_cache_file(self):
cache_key = hashlib.sha256("!".join(self.input_filenames).encode()).hexdigest()
self.cache_dir = os.path.dirname(self.input_filenames[0]) + "/cache"
self.cache_file = "{}/{}.json".format(self.cache_dir, cache_key)
def load_cache(self):
if os.path.exists(self.cache_file):
with open(self.cache_file, "r") as f:
try:
cache_data = json.load(f)
self.filenames = cache_data["filenames"]
self.traces = cache_data["traces"]
self.preprocessing_stats = cache_data["preprocessing_stats"]
if "pta" in cache_data:
self.pta = cache_data["pta"]
if "ptalog" in cache_data:
self.ptalog = cache_data["ptalog"]
self.setup_by_fileno = cache_data["setup_by_fileno"]
self.preprocessed = True
except json.decoder.JSONDecodeError as e:
logger.info(f"Skipping cache entry {self.cache_file}: {e}")
def save_cache(self):
if self.with_traces:
return
try:
os.mkdir(self.cache_dir)
except FileExistsError:
pass
except PermissionError:
logger.info(
f"Cannot write cache entry {self.cache_file}: permission denied"
)
# no cache for you
return
with open(self.cache_file, "w") as f:
cache_data = {
"filenames": self.filenames,
"traces": self.traces,
"preprocessing_stats": self.preprocessing_stats,
"pta": self.pta,
"ptalog": self.ptalog,
"setup_by_fileno": self.setup_by_fileno,
}
json.dump(cache_data, f, cls=NpEncoder)
def to_dref(self) -> dict:
return {
"raw measurements/valid": self.preprocessing_stats["num_valid"],
"raw measurements/total": self.preprocessing_stats["num_runs"],
"static state duration/mean": (
np.mean(list(map(lambda x: x["state_duration"], self.setup_by_fileno))),
r"\milli\second",
),
}
def _concatenate_traces(self, list_of_traces):
"""
Concatenate `list_of_traces` (list of lists) into a single trace while adjusting trace IDs.
:param list_of_traces: List of list of traces.
:returns: List of traces with ['id'] in ascending order and ['orig_id'] as previous ['id']
"""
trace_output = list()
for trace in list_of_traces:
trace_output.extend(trace.copy())
for i, trace in enumerate(trace_output):
trace["orig_id"] = trace["id"]
trace["id"] = i
return trace_output
def get_preprocessed_data(self):
"""
Return a list of DFA traces annotated with energy, timing, and parameter data.
The list is cached on disk, unless the constructor was called with `with_traces` set.
Each DFA trace contains the following elements:
* `id`: Numeric ID, starting with 1
* `total_energy`: Total amount of energy (as measured by MIMOSA) in the entire trace
* `orig_id`: Original trace ID. May differ when concatenating multiple (different) benchmarks into one analysis, i.e., when calling RawData() with more than one file argument.
* `trace`: List of the individual states and transitions in this trace. Always contains an even number of elements, staring with the first state (typically "UNINITIALIZED") and ending with a transition.
Each trace element (that is, an entry of the `trace` list mentioned above) contains the following elements:
* `isa`: "state" or "transition"
* `name`: name
* `offline`: List of offline measumerents for this state/transition. Each entry contains a result for this state/transition during one benchmark execution.
Entry contents:
- `clip_rate`: rate of clipped energy measurements, 0 .. 1
- `raw_mean`: mean raw MIMOSA value
- `raw_std`: standard deviation of raw MIMOSA value
- `uW_mean`: mean power draw, uW
- `uw_std`: standard deviation of power draw, uW
- `us`: state/transition duration, us
- `uW_mean_delta_prev`: (only for transitions) difference between uW_mean of this transition and uW_mean of previous state
- `uW_mean_elta_next`: (only for transitions) difference between uW_mean of this transition and uW_mean of next state
- `timeout`: (only for transitions) duration of previous state, us
* `offline_aggregates`: Aggregate of `offline` entries. dict of lists, each list entry has the same length
- `duration`: state/transition durations ("us"), us
- `energy`: state/transition energy ("us * uW_mean"), us
- `power`: mean power draw ("uW_mean"), uW
- `power_std`: standard deviations of power draw ("uW_std"), uW^2
- `paramkeys`: List of lists, each sub-list contains the parameter names corresponding to the `param` entries
- `param`: List of lists, each sub-list contains the parameter values for this measurement. Typically, all sub-lists are the same.
- `rel_energy_prev`: (only for transitions) transition energy relative to previous state mean power, pJ
- `rel_energy_next`: (only for transitions) transition energy relative to next state mean power, pJ
- `rel_power_prev`: (only for transitions) powerrelative to previous state mean power, µW
- `rel_power_next`: (only for transitions) power relative to next state mean power, µW
- `timeout`: (only for transitions) duration of previous state, us
* `offline_attributes`: List containing the keys of `offline_aggregates` which are meant to be part of the model.
This list ultimately decides which hardware/software attributes the model describes.
If isa == state, it contains power, duration, energy
If isa == transition, it contains power, rel_power_prev, rel_power_next, duration, timeout
* `online`: List of online estimations for this state/transition. Each entry contains a result for this state/transition during one benchmark execution.
Entry contents for isa == state:
- `time`: state/transition
Entry contents for isa == transition:
- `timeout`: Duration of previous state, measured using on-board timers
* `parameter`: dictionary describing parameter values for this state/transition. Parameter values refer to the begin of the state/transition and do not account for changes made by the transition.
* `plan`: Dictionary describing expected behaviour according to schedule / offline model.
Contents for isa == state: `energy`, `power`, `time`
Contents for isa == transition: `energy`, `timeout`, `level`.
If level is "user", the transition is part of the regular driver API. If level is "epilogue", it is an interrupt service routine and not called explicitly.
Each transition also contains:
* `args`: List of arguments the corresponding function call was called with. args entries are strings which are not necessarily numeric
* `code`: List of function name (first entry) and arguments (remaining entries) of the corresponding function call
"""
if self.preprocessed:
return self.traces
if self.version <= 3:
self._preprocess(self.version)
else:
raise ValueError(f"Unsupported raw data version: {self.version}")
self.preprocessed = True
self.save_cache()
return self.traces
def _preprocess(self, version):
"""Load raw MIMOSA data and turn it into measurements which are ready to be analyzed."""
offline_data = []
for i, filename in enumerate(self.input_filenames):
if version == 0:
self.filenames = self.input_filenames
with tarfile.open(filename) as tf:
self.setup_by_fileno.append(json.load(tf.extractfile("setup.json")))
traces = json.load(
tf.extractfile("src/apps/DriverEval/DriverLog.json")
)
self.traces_by_fileno.append(traces)
for member in tf.getmembers():
_, extension = os.path.splitext(member.name)
if extension == ".mim":
offline_data.append(
{
"content": tf.extractfile(member).read(),
# only for validation
"expected_trace": traces,
"fileno": i,
# For debug output and warnings
"info": member,
# Strip the last state (it is not part of the scheduled measurement)
"pop": -1,
"repeat_id": 0, # needed to add runtime "return_value.apply_from" parameters to offline_aggregates. Irrelevant in v0.
"setup": self.setup_by_fileno[i],
"with_traces": self.with_traces,
}
)
elif version == 1:
with tarfile.open(filename) as tf:
ptalog = json.load(tf.extractfile(tf.getmember("ptalog.json")))
# Benchmark code may be too large to be executed in a single
# run, so benchmarks (a benchmark is basically a list of DFA runs)
# may be split up. To accomodate this, ptalog['traces'] is
# a list of lists: ptalog['traces'][0] corresponds to the
# first benchmark part, ptalog['traces'][1] to the
# second, and so on. ptalog['traces'][0][0] is the first
# trace (a sequence of states and transitions) in the
# first benchmark part, ptalog['traces'][0][1] the second, etc.
#
# As traces are typically repeated to minimize the effect
# of random noise, observations for each benchmark part
# are also lists. In this case, this applies in two
# cases: traces[i][j]['parameter'][some_param] is either
# a value (if the parameter is controlld by software)
# or a list (if the parameter is known a posteriori, e.g.
# "how many retransmissions did this packet take?").
#
# The second case is the MIMOSA energy measurements, which
# are listed in ptalog['files']. ptalog['files'][0]
# contains a list of files for the first benchmark part,
# ptalog['files'][0][0] is its first iteration/repetition,
# ptalog['files'][0][1] the second, etc.
for j, traces in enumerate(ptalog["traces"]):
self.filenames.append("{}#{}".format(filename, j))
self.traces_by_fileno.append(traces)
self.setup_by_fileno.append(
{
"mimosa_voltage": ptalog["configs"][j]["voltage"],
"mimosa_shunt": ptalog["configs"][j]["shunt"],
"state_duration": ptalog["opt"]["sleep"],
}
)
for repeat_id, mim_file in enumerate(ptalog["files"][j]):
# MIMOSA benchmarks always use a single .mim file per benchmark run.
# However, depending on the dfatool version used to run the
# benchmark, ptalog["files"][j] is either "foo.mim" (before Oct 2020)
# or ["foo.mim"] (from Oct 2020 onwards).
if type(mim_file) is list:
mim_file = mim_file[0]
member = tf.getmember(mim_file)
offline_data.append(
{
"content": tf.extractfile(member).read(),
# only for validation
"expected_trace": traces,
"fileno": len(self.traces_by_fileno) - 1,
# For debug output and warnings
"info": member,
# The first online measurement is the UNINITIALIZED state. In v1,
# it is not part of the expected PTA trace -> remove it.
"pop": 0,
"setup": self.setup_by_fileno[-1],
"repeat_id": repeat_id, # needed to add runtime "return_value.apply_from" parameters to offline_aggregates.
"with_traces": self.with_traces,
}
)
elif version == 2:
with tarfile.open(filename) as tf:
ptalog = json.load(tf.extractfile(tf.getmember("ptalog.json")))
if "sync" in ptalog["opt"]["energytrace"]:
sync_mode = ptalog["opt"]["energytrace"]["sync"]
else:
sync_mode = "bar"
# Benchmark code may be too large to be executed in a single
# run, so benchmarks (a benchmark is basically a list of DFA runs)
# may be split up. To accomodate this, ptalog['traces'] is
# a list of lists: ptalog['traces'][0] corresponds to the
# first benchmark part, ptalog['traces'][1] to the
# second, and so on. ptalog['traces'][0][0] is the first
# trace (a sequence of states and transitions) in the
# first benchmark part, ptalog['traces'][0][1] the second, etc.
#
# As traces are typically repeated to minimize the effect
# of random noise, observations for each benchmark part
# are also lists. In this case, this applies in two
# cases: traces[i][j]['parameter'][some_param] is either
# a value (if the parameter is controlld by software)
# or a list (if the parameter is known a posteriori, e.g.
# "how many retransmissions did this packet take?").
#
# The second case is the MIMOSA energy measurements, which
# are listed in ptalog['files']. ptalog['files'][0]
# contains a list of files for the first benchmark part,
# ptalog['files'][0][0] is its first iteration/repetition,
# ptalog['files'][0][1] the second, etc.
# generate-dfa-benchmark uses TimingHarness to obtain timing data.
# Data is placed in 'offline_aggregates', which is also
# where we are going to store power/energy data.
# In case of invalid measurements, this can lead to a
# mismatch between duration and power/energy data, e.g.
# where duration = [A, B, C], power = [a, b], B belonging
# to an invalid measurement and thus power[b] corresponding
# to duration[C]. At the moment, this is harmless, but in the
# future it might not be.
if "offline_aggregates" in ptalog["traces"][0][0]["trace"][0]:
for trace_group in ptalog["traces"]:
for trace in trace_group:
for state_or_transition in trace["trace"]:
offline_aggregates = state_or_transition.pop(
"offline_aggregates", None
)
if offline_aggregates:
state_or_transition["online_aggregates"] = (
offline_aggregates
)
for j, traces in enumerate(ptalog["traces"]):
self.filenames.append("{}#{}".format(filename, j))
self.traces_by_fileno.append(traces)
self.setup_by_fileno.append(
{
"voltage": ptalog["configs"][j]["voltage"],
"state_duration": ptalog["opt"]["sleep"],
}
)
for repeat_id, etlog_files in enumerate(ptalog["files"][j]):
# legacy measurements supported only one file per run
if type(etlog_files) is not list:
etlog_files = [etlog_files]
members = list(map(tf.getmember, etlog_files))
offline_data.append(
{
"content": list(
map(lambda f: tf.extractfile(f).read(), members)
),
# used to determine EnergyTrace class for analysis
"sync_mode": sync_mode,
"fileno": len(self.traces_by_fileno) - 1,
# For debug output and warnings
"info": members[0],
"setup": self.setup_by_fileno[-1],
# needed to add runtime "return_value.apply_from" parameters to offline_aggregates, also for EnergyTraceWithBarcode
"repeat_id": repeat_id,
# only for validation
"expected_trace": traces,
"with_traces": self.with_traces,
# only for EnergyTraceWithBarcode
"transition_names": list(
map(
lambda x: x["name"],
ptalog["pta"]["transitions"],
)
),
}
)
# TODO remove 'offline_aggregates' from pre-parse data and place
# it under 'online_aggregates' or similar instead. This way, if
# a .etlog file fails to parse, its corresponding duration data
# will not linger in 'offline_aggregates' and confuse the hell
# out of other code paths
elif self.version == 3:
with tarfile.open(filename) as tf:
ptalog = json.load(tf.extractfile(tf.getmember("ptalog.json")))
# generate-dfa-benchmark uses TimingHarness to obtain timing data.
# Data is placed in 'offline_aggregates', which is also
# where we are going to store power/energy data.
# In case of invalid measurements, this can lead to a
# mismatch between duration and power/energy data, e.g.
# where duration = [A, B, C], power = [a, b], B belonging
# to an invalid measurement and thus power[b] corresponding
# to duration[C]. At the moment, this is harmless, but in the
# future it might not be.
if "offline_aggregates" in ptalog["traces"][0][0]["trace"][0]:
for trace_group in ptalog["traces"]:
for trace in trace_group:
for state_or_transition in trace["trace"]:
offline_aggregates = state_or_transition.pop(
"offline_aggregates", None
)
if offline_aggregates:
state_or_transition["online_aggregates"] = (
offline_aggregates
)
for j, traces in enumerate(ptalog["traces"]):
self.filenames.append("{}#{}".format(filename, j))
self.traces_by_fileno.append(traces)
self.setup_by_fileno.append(
{
"voltage": ptalog["configs"][j]["voltage"],
"state_duration": ptalog["opt"]["sleep"],
}
)
for repeat_id, dlog_file in enumerate(ptalog["files"][j]):
member = tf.getmember(dlog_file)
offline_data.append(
{
"content": tf.extractfile(member).read(),
"fileno": len(self.traces_by_fileno) - 1,
# For debug output and warnings
"info": member,
"setup": self.setup_by_fileno[-1],
# needed to add runtime "return_value.apply_from" parameters to offline_aggregates
"repeat_id": repeat_id,
# only for validation
"expected_trace": traces,
"with_traces": self.with_traces,
}
)
if self.version == 0 and len(self.input_filenames) > 1:
for entry in offline_data:
assert_legacy_compatibility(
self.input_filenames[0],
offline_data[0],
self.input_filenames[entry["fileno"]],
entry,
)
with Pool() as pool:
if self.version <= 1:
measurements = pool.map(_preprocess_mimosa, offline_data)
elif self.version == 2:
measurements = pool.map(_preprocess_etlog, offline_data)
elif self.version == 3:
measurements = pool.map(_preprocess_dlog, offline_data)
num_valid = 0
for measurement in measurements:
if "energy_trace" not in measurement:
logger.warning(
"Skipping {ar:s}/{m:s}: {e:s}".format(
ar=self.filenames[measurement["fileno"]],
m=measurement["info"].name,
e="; ".join(measurement["errors"]),
)
)
continue
if version == 0 or version == 1:
if measurement["valid"]:
MIMOSA.add_offline_aggregates(
self.traces_by_fileno[measurement["fileno"]],
measurement["energy_trace"],
measurement["repeat_id"],
)
num_valid += 1
else:
logger.warning(
"Skipping {ar:s}/{m:s}: {e:s}".format(
ar=self.filenames[measurement["fileno"]],
m=measurement["info"].name,
e="; ".join(measurement["errors"]),
)
)
elif version == 2 or version == 3:
if measurement["valid"]:
try:
EnergyTrace.add_offline_aggregates(
self.traces_by_fileno[measurement["fileno"]],
measurement["energy_trace"],
measurement["repeat_id"],
)
num_valid += 1
except Exception as e:
logger.warning(
f"Skipping #{measurement['fileno']} {measurement['info']}:\n{e}"
)
else:
logger.warning(
"Skipping {ar:s}/{m:s}: {e:s}".format(
ar=self.filenames[measurement["fileno"]],
m=measurement["info"].name,
e="; ".join(measurement["errors"]),
)
)
logger.info(
"{num_valid:d}/{num_total:d} measurements are valid".format(
num_valid=num_valid, num_total=len(measurements)
)
)
self.traces = self._concatenate_traces(self.traces_by_fileno)
self.preprocessing_stats = {
"num_runs": len(measurements),
"num_valid": num_valid,
}
def _add_trace_data_to_aggregate(aggregate, key, element):
# Only cares about element['isa'], element['offline_aggregates'], and
# element['plan']['level']
if key not in aggregate:
aggregate[key] = {"isa": element["isa"]}
for datakey in element["offline_aggregates"].keys():
aggregate[key][datakey] = []
if element["isa"] == "state":
aggregate[key]["attributes"] = ["power"]
else:
# TODO do not hardcode values
aggregate[key]["attributes"] = [
"duration",
"power",
"rel_power_prev",
"rel_power_next",
"energy",
"rel_energy_prev",
"rel_energy_next",
]
if "plan" in element and element["plan"]["level"] == "epilogue":
aggregate[key]["attributes"].insert(0, "timeout")
attributes = aggregate[key]["attributes"].copy()
for attribute in attributes:
if attribute not in element["offline_aggregates"]:
aggregate[key]["attributes"].remove(attribute)
if "offline_support" in element:
aggregate[key]["supports"] = element["offline_support"]
else:
aggregate[key]["supports"] = list()
for datakey, dataval in element["offline_aggregates"].items():
aggregate[key][datakey].extend(dataval)
def pta_trace_to_aggregate(traces, ignore_trace_indexes=[]):
"""
Convert preprocessed DFA traces from peripherals/drivers to by_name aggregate for PTAModel.
arguments:
traces -- [ ... Liste von einzelnen Läufen (d.h. eine Zustands- und Transitionsfolge UNINITIALIZED -> foo -> FOO -> bar -> BAR -> ...)
Jeder Lauf:
- id: int Nummer des Laufs, beginnend bei 1
- trace: [ ... Liste von Zuständen und Transitionen
Jeweils:
- name: str Name
- isa: str state // transition
- parameter: { ... globaler Parameter: aktueller wert. null falls noch nicht eingestellt }
- args: [ Funktionsargumente, falls isa == 'transition' ]
- offline_aggregates:
- power: [float(uW)] Mittlere Leistung während Zustand/Transitions
- power_std: [float(uW^2)] Standardabweichung der Leistung
- duration: [int(us)] Dauer
- energy: [float(pJ)] Energieaufnahme des Zustands / der Transition
- clip_rate: [float(0..1)] Clipping
- paramkeys: [[str]] Name der berücksichtigten Parameter
- param: [int // str] Parameterwerte. Quasi-Duplikat von 'parameter' oben
Falls isa == 'transition':
- timeout: [int(us)] Dauer des vorherigen Zustands
- rel_energy_prev: [int(pJ)]
- rel_energy_next: [int(pJ)]
- rel_power_prev: [int(µW)]
- rel_power_next: [int(µW)]
]
]
ignore_trace_indexes -- list of trace indexes. The corresponding taces will be ignored.
returns a tuple of three elements:
by_name -- measurements aggregated by state/transition name, annotated with parameter values
parameter_names -- list of parameter names
arg_count -- dict mapping transition names to the number of arguments of their corresponding driver function
by_name layout:
Dictionary with one key per state/transition ('send', 'TX', ...).
Each element is in turn a dict with the following elements:
- isa: 'state' or 'transition'
- power: list of mean power measurements in µW
- duration: list of durations in µs
- power_std: list of stddev of power per state/transition
- energy: consumed energy (power*duration) in pJ
- paramkeys: list of parameter names in each measurement (-> list of lists)
- param: list of parameter values in each measurement (-> list of lists)
- attributes: list of keys that should be analyzed,
e.g. ['power', 'duration']
additionally, only if isa == 'transition':
- timeout: list of duration of previous state in µs
- rel_energy_prev: transition energy relative to previous state mean power in pJ
- rel_energy_next: transition energy relative to next state mean power in pJ
"""
arg_count = dict()
by_name = dict()
parameter_names = sorted(traces[0]["trace"][0]["parameter"].keys())
for run in traces:
if run["id"] not in ignore_trace_indexes:
for elem in run["trace"]:
if (
elem["isa"] == "transition"
and not elem["name"] in arg_count
and "args" in elem
):
arg_count[elem["name"]] = len(elem["args"])
if elem["name"] != "UNINITIALIZED":
_add_trace_data_to_aggregate(by_name, elem["name"], elem)
for elem in by_name.values():
for key in elem["attributes"]:
elem[key] = np.array(elem[key])
return by_name, parameter_names, arg_count
|