1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
|
#!/usr/bin/env python3
import json
import logging
import numpy as np
import os
from bisect import bisect_right
from dfatool.utils import NpEncoder
logger = logging.getLogger(__name__)
class ExternalTimerSync:
def __init__(self):
raise NotImplementedError("must be implemented in sub-class")
def assert_sync_areas(self, sync_areas):
# may be implemented in sub-class
pass
def compensate_drift(self, data, timestamps, event_timestamps, offline_index=None):
# adjust intermediate timestamps. There is a small error between consecutive measurements,
# again due to drift caused by random temperature fluctuation. The error increases with
# increased distance from synchronization points: It is negligible at the start and end
# of the measurement and may be quite high around the middle. That's just the bounds, though --
# you may also have a low error in the middle and error peaks elsewhere.
# As the start and stop timestamps have already been synchronized, we only adjust
# actual transition timestamps here.
if os.getenv("DFATOOL_COMPENSATE_DRIFT"):
import dfatool.drift
if len(self.hw_statechange_indexes):
# measurement was performed with EnergyTrace++
# (i.e., with cpu state annotations)
return dfatool.drift.compensate_etplusplus(
data,
timestamps,
event_timestamps,
self.hw_statechange_indexes,
offline_index=offline_index,
)
return dfatool.drift.compensate(
data, timestamps, event_timestamps, offline_index=offline_index
)
return event_timestamps
# very similar to DataProcessor.getStatesdfatool
# requires:
# * self.data (e.g. power readings)
# * self.timestamps (timstamps in seconds)
# * self.sync_min_high_count, self.sync_min_low_count: outlier handling in synchronization pulse detection
# * self.sync_power, self.sync_min_duration: synchronization pulse parameters. one pulse before the measurement, two pulses afterwards
# expected_trace must contain online timestamps
# TODO automatically determine sync_power if it is None
def analyze_states(self, expected_trace, repeat_id, online_timestamps=None):
"""
:param online_timestamps: must start at 0, if set
"""
sync_start = None
sync_timestamps = list()
high_count = 0
low_count = 0
high_ts = None
low_ts = None
for i, timestamp in enumerate(self.timestamps):
power = self.data[i]
if power > self.sync_power:
if high_count == 0:
high_ts = timestamp
high_count += 1
low_count = 0
else:
if low_count == 0:
low_ts = timestamp
high_count = 0
low_count += 1
if high_count >= self.sync_min_high_count and sync_start is None:
sync_start = high_ts
elif low_count >= self.sync_min_low_count and sync_start is not None:
if low_ts - sync_start > self.sync_min_duration:
sync_end = low_ts
sync_timestamps.append((sync_start, sync_end))
sync_start = None
if len(sync_timestamps) != 3:
self.errors.append(
f"Found {len(sync_timestamps)} synchronization pulses, expected three."
)
self.errors.append(f"Synchronization pulses == {sync_timestamps}")
return list()
self.assert_sync_areas(sync_timestamps)
start_ts = sync_timestamps[0][1]
end_ts = sync_timestamps[1][0]
if online_timestamps is None:
# start and end of first state
online_timestamps = [0, expected_trace[0]["start_offset"][repeat_id]]
# remaining events from the end of the first transition (start of second state) to the end of the last observed state
try:
for trace in expected_trace:
for word in trace["trace"]:
online_timestamps.append(
online_timestamps[-1]
+ word["online_aggregates"]["duration"][repeat_id]
)
except IndexError:
self.errors.append(
f"""offline_index {repeat_id} missing in trace {trace["id"]}"""
)
return list()
online_timestamps = np.array(online_timestamps) * 1e-6
else:
online_timestamps = np.array(online_timestamps)
online_timestamps = (
online_timestamps
* ((end_ts - start_ts) / (online_timestamps[-1] - online_timestamps[0]))
+ start_ts
)
# drift compensation works on transition boundaries. Exclude start of first state and end of last state.
# Those are defined to have zero drift anyways.
online_timestamps[1:-1] = self.compensate_drift(
self.data, self.timestamps, online_timestamps[1:-1], repeat_id
)
trigger_edges = list()
for ts in online_timestamps:
trigger_edges.append(bisect_right(self.timestamps, ts))
energy_trace = list()
for i in range(2, len(online_timestamps), 2):
prev_state_start_index = trigger_edges[i - 2]
prev_state_stop_index = trigger_edges[i - 1]
transition_start_index = trigger_edges[i - 1]
transition_stop_index = trigger_edges[i]
state_start_index = trigger_edges[i]
state_stop_index = trigger_edges[i + 1]
# If a transition takes less time than the measurement interval, its start and stop index may be the same.
# In this case, self.data[transition_start_index] is the only data point affected by the transition.
# We use the self.data slice [transition_start_index, transition_stop_index) to determine the mean power, so we need
# to increment transition_stop_index by 1 to end at self.data[transition_start_index]
# (self.data[transition_start_index : transition_start_index+1 ] == [self.data[transition_start_index])
if transition_stop_index == transition_start_index:
transition_stop_index += 1
prev_state_duration = online_timestamps[i + 1] - online_timestamps[i]
transition_duration = online_timestamps[i] - online_timestamps[i - 1]
state_duration = online_timestamps[i + 1] - online_timestamps[i]
# some states are followed by a UART dump of log data. This causes an increase in CPU energy
# consumption and is not part of the peripheral behaviour, so it should not be part of the benchmark results.
# If a case is followed by a UART dump, its duration is longer than the sleep duration between two transitions.
# In this case, we re-calculate the stop index, and calculate the state duration from coarse energytrace data
# instead of high-precision sync data
if (
self.timestamps[prev_state_stop_index]
- self.timestamps[prev_state_start_index]
> self.state_duration
):
prev_state_stop_index = bisect_right(
self.timestamps,
self.timestamps[prev_state_start_index] + self.state_duration,
)
prev_state_duration = (
self.timestamps[prev_state_stop_index]
- self.timestamps[prev_state_start_index]
)
if (
self.timestamps[state_stop_index] - self.timestamps[state_start_index]
> self.state_duration
):
state_stop_index = bisect_right(
self.timestamps,
self.timestamps[state_start_index] + self.state_duration,
)
state_duration = (
self.timestamps[state_stop_index]
- self.timestamps[state_start_index]
)
prev_state_power = self.data[prev_state_start_index:prev_state_stop_index]
transition_timestamps = self.timestamps[
transition_start_index:transition_stop_index
]
transition_power = self.data[transition_start_index:transition_stop_index]
state_timestamps = self.timestamps[state_start_index:state_stop_index]
state_power = self.data[state_start_index:state_stop_index]
transition = {
"isa": "transition",
"W_mean": np.mean(transition_power),
"W_std": np.std(transition_power),
"s": transition_duration,
}
if self.with_traces:
transition["plot"] = (
transition_timestamps - transition_timestamps[0],
transition_power,
)
state = {
"isa": "state",
"W_mean": np.mean(state_power),
"W_std": np.std(state_power),
"s": state_duration,
}
if self.with_traces:
state["plot"] = (state_timestamps - state_timestamps[0], state_power)
transition["W_mean_delta_prev"] = transition["W_mean"] - np.mean(
prev_state_power
)
transition["W_mean_delta_next"] = transition["W_mean"] - state["W_mean"]
energy_trace.append(transition)
energy_trace.append(state)
if os.getenv("DFATOOL_PLOT_SYNC") is not None and repeat_id == int(
os.getenv("DFATOOL_PLOT_SYNC")
):
self.plot_sync(online_timestamps) # <- plot traces with sync annotatons
# self.plot_sync(names) # <- plot annotated traces (with state/transition names)
# TODO LASYNC -> SYNC
if os.getenv("DFATOOL_EXPORT_LASYNC") is not None:
filename = os.getenv("DFATOOL_EXPORT_LASYNC") + f"_{repeat_id}.json"
with open(filename, "w") as f:
json.dump(self._export_sync(online_timestamps), f, cls=NpEncoder)
logger.info("Exported sync timestamps to {filename}")
return energy_trace
def _export_sync(self, online_timestamps):
# [(1st trans start, 1st trans stop), (2nd trans start, 2nd trans stop), ...]
sync_timestamps = list()
for i in range(1, len(online_timestamps) - 1, 2):
sync_timestamps.append((online_timestamps[i], online_timestamps[i + 1]))
# input timestamps
timestamps = self.timestamps
# input data, e.g. power
data = self.data
# TODO "power" -> "data"
return {"sync": sync_timestamps, "timestamps": timestamps, "power": data}
def plot_sync(self, event_timestamps, annotateData=None):
"""
Plots the power usage and the timestamps by logic analyzer
:param annotateData: List of Strings with labels, only needed if annotated plots are wished
:return: None
"""
def calculateRectangleCurve(timestamps, min_value=0, max_value=0.160):
import numpy as np
data = []
for ts in timestamps:
data.append(ts)
data.append(ts)
a = np.empty((len(data),))
a[0::4] = max_value
a[1::4] = min_value
a[2::4] = min_value
a[3::4] = max_value
return data, a # plotting by columns
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
if annotateData:
annot = ax.annotate(
"",
xy=(0, 0),
xytext=(20, 20),
textcoords="offset points",
bbox=dict(boxstyle="round", fc="w"),
arrowprops=dict(arrowstyle="->"),
)
annot.set_visible(True)
rectCurve_with_drift = calculateRectangleCurve(
event_timestamps, max_value=max(self.data)
)
plt.plot(self.timestamps, self.data, label="Leistung")
plt.plot(self.timestamps, np.gradient(self.data), label="dP/dt")
plt.plot(rectCurve_with_drift[0], rectCurve_with_drift[1], "-g", label="Events")
plt.xlabel("Zeit [s]")
plt.ylabel("Leistung [W]")
leg = plt.legend()
def getDataText(x):
# print(x)
dl = len(annotateData)
for i, xt in enumerate(event_timestamps):
if xt > x and 0 <= i < dl:
return f"SoT: {annotateData[i]}"
def update_annot(x, y, name):
annot.xy = (x, y)
text = name
annot.set_text(text)
annot.get_bbox_patch().set_alpha(0.4)
def hover(event):
if event.xdata and event.ydata:
annot.set_visible(False)
update_annot(event.xdata, event.ydata, getDataText(event.xdata))
annot.set_visible(True)
fig.canvas.draw_idle()
if annotateData:
fig.canvas.mpl_connect("motion_notify_event", hover)
plt.show()
|