1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
#!/usr/bin/env python3
import csv
import io
import numpy as np
import struct
import xml.etree.ElementTree as ET
from dfatool.loader.generic import ExternalTimerSync
class KeysightCSV:
"""Simple loader for Keysight CSV data, as exported by the windows software."""
def __init__(self):
"""Create a new KeysightCSV object."""
pass
def load_data(self, filename: str):
"""
Load log data from filename, return timestamps and currents.
Returns two one-dimensional NumPy arrays: timestamps and corresponding currents.
"""
with open(filename) as f:
for i, _ in enumerate(f):
pass
timestamps = np.ndarray((i - 3), dtype=float)
currents = np.ndarray((i - 3), dtype=float)
# basically seek back to start
with open(filename) as f:
for _ in range(4):
next(f)
reader = csv.reader(f, delimiter=",")
for i, row in enumerate(reader):
timestamps[i] = float(row[0])
currents[i] = float(row[2]) * -1
return timestamps, currents
class DLogChannel:
def __init__(self, desc_tuple):
self.slot = desc_tuple[0]
self.smu = desc_tuple[1]
self.unit = desc_tuple[2]
self.data = None
def __repr__(self):
return f"""<DLogChannel(slot={self.slot}, smu="{self.smu}", unit="{self.unit}", data={self.data})>"""
class DLog(ExternalTimerSync):
def __init__(
self,
voltage: float,
state_duration: int,
with_traces=False,
skip_duration=None,
limit_duration=None,
):
self.voltage = voltage
self.state_duration = state_duration
self.with_traces = with_traces
self.skip_duration = skip_duration
self.limit_duration = limit_duration
self.errors = list()
self.sync_min_duration = 0.7
self.sync_min_low_count = 3
self.sync_min_high_count = 3
# TODO auto-detect
self.sync_power = 10e-3
def load_data(self, content):
lines = []
line = ""
with io.BytesIO(content) as f:
while line != "</dlog>\n":
line = f.readline().decode()
lines.append(line)
xml_header = "".join(lines)
raw_header = f.read(8)
data_offset = f.tell()
raw_data = f.read()
xml_header = xml_header.replace("1ua>", "X1ua>")
xml_header = xml_header.replace("2ua>", "X2ua>")
dlog = ET.fromstring(xml_header)
channels = []
for channel in dlog.findall("channel"):
channel_id = int(channel.get("id"))
sense_curr = channel.find("sense_curr").text
sense_volt = channel.find("sense_volt").text
model = channel.find("ident").find("model").text
if sense_volt == "1":
channels.append((channel_id, model, "V"))
if sense_curr == "1":
channels.append((channel_id, model, "A"))
num_channels = len(channels)
self.channels = list(map(DLogChannel, channels))
self.interval = float(dlog.find("frame").find("tint").text)
self.sense_minmax = int(dlog.find("frame").find("sense_minmax").text)
self.planned_duration = int(dlog.find("frame").find("time").text)
self.observed_duration = self.interval * int(len(raw_data) / (4 * num_channels))
if self.sense_minmax:
raise RuntimeError(
"DLog files with 'Log Min/Max' enabled are not supported yet"
)
self.timestamps = np.linspace(
0, self.observed_duration, num=int(len(raw_data) / (4 * num_channels))
)
if (
self.skip_duration is not None
and self.observed_duration >= self.skip_duration
):
start_offset = 0
for i, ts in enumerate(self.timestamps):
if ts >= self.skip_duration:
start_offset = i
break
self.timestamps = self.timestamps[start_offset:]
raw_data = raw_data[start_offset * 4 * num_channels :]
if (
self.limit_duration is not None
and self.observed_duration > self.limit_duration
):
stop_offset = len(self.timestamps) - 1
for i, ts in enumerate(self.timestamps):
if ts > self.limit_duration:
stop_offset = i
break
self.timestamps = self.timestamps[:stop_offset]
self.observed_duration = self.timestamps[-1]
raw_data = raw_data[: stop_offset * 4 * num_channels]
self.data = np.ndarray(
shape=(num_channels, int(len(raw_data) / (4 * num_channels))),
dtype=np.float32,
)
iterator = struct.iter_unpack(">f", raw_data)
channel_offset = 0
measurement_offset = 0
for value in iterator:
if value[0] < -1e6 or value[0] > 1e6:
print(
f"Invalid data value {value[0]} at channel {channel_offset}, measurement {measurement_offset}. Replacing with 0."
)
self.data[channel_offset, measurement_offset] = 0
else:
self.data[channel_offset, measurement_offset] = value[0]
if channel_offset + 1 == num_channels:
channel_offset = 0
measurement_offset += 1
else:
channel_offset += 1
# An SMU has four slots
self.slots = [dict(), dict(), dict(), dict()]
for i, channel in enumerate(self.channels):
channel.data = self.data[i]
self.slots[channel.slot - 1][channel.unit] = channel
assert "A" in self.slots[0]
self.data = self.slots[0]["A"].data * self.voltage
def observed_duration_equals_expectation(self):
return int(self.observed_duration) == self.planned_duration
|