1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
|
#!/usr/bin/env python3
import itertools
import logging
import numpy as np
import os
import warnings
from collections import OrderedDict
from copy import deepcopy
from multiprocessing import Pool
import dfatool.functions as df
from .utils import remove_index_from_tuple, is_numeric
from .utils import filter_aggregate_by_param, partition_by_param
logger = logging.getLogger(__name__)
def distinct_param_values(param_tuples):
"""
Return the distinct values of each parameter in param_tuples.
E.g. if param_tuples contains the distinct entries (1, 1), (1, 2), (1, 3), (0, 3),
this function returns [[1, 0], [1, 2, 3]].
Note that this function deliberately also consider None
(uninitialized parameter with unknown value) as a distinct value. Benchmarks
and drivers must ensure that a parameter is only None when its value is
not important yet, e.g. a packet length parameter must only be None when
write() or similar has not been called yet. Other parameters should always
be initialized when leaving UNINITIALIZED.
"""
distinct_values = [OrderedDict() for i in range(len(param_tuples[0]))]
for param_tuple in param_tuples:
for i in range(len(param_tuple)):
distinct_values[i][param_tuple[i]] = True
# Convert sets to lists
distinct_values = list(map(lambda x: list(x.keys()), distinct_values))
return distinct_values
def _depends_on_param(corr_param, std_param, std_lut):
# if self.use_corrcoef:
if False:
return corr_param > 0.1
elif std_param == 0:
# In general, std_param_lut < std_by_param. So, if std_by_param == 0, std_param_lut == 0 follows.
# This means that the variation of param does not affect the model quality -> no influence
return False
return std_lut / std_param < 0.5
def _reduce_param_matrix(matrix: np.ndarray, parameter_names: list) -> list:
"""
:param matrix: parameter dependence matrix, M[(...)] == 1 iff (model attribute) is influenced by (parameter) for other parameter value indxe == (...)
:param parameter_names: names of parameters in the order in which they appear in the matrix index. The first entry corresponds to the first axis, etc.
:returns: parameters which determine whether (parameter) has an effect on (model attribute). If a parameter is not part of this list, its value does not
affect (parameter)'s influence on (model attribute) -- it either always or never has an influence
"""
if np.all(matrix == True) or np.all(matrix == False):
return list()
# Diese Abbruchbedingung scheint noch nicht so schlau zu sein...
# Mit wird zu viel rausgefiltert (z.B. auto_ack! -> max_retry_count in "bin/analyze-timing.py ../data/20190815_122531_nRF24_no-rx.json" nicht erkannt)
# Ohne wird zu wenig rausgefiltert (auch ganz viele Abhängigkeiten erkannt, bei denen eine Parameter-Abhängigketi immer unabhängig vom Wert der anderen Parameter besteht)
# if not is_power_of_two(np.count_nonzero(matrix)):
# # cannot be reliably reduced to a list of parameters
# return list()
if np.count_nonzero(matrix) == 1:
influential_parameters = list()
for i, parameter_name in enumerate(parameter_names):
if matrix.shape[i] > 1:
influential_parameters.append(parameter_name)
return influential_parameters
for axis in range(matrix.ndim):
candidate = _reduce_param_matrix(
np.all(matrix, axis=axis), remove_index_from_tuple(parameter_names, axis)
)
if len(candidate):
return candidate
return list()
def _std_by_param(n_by_param, all_param_values, param_index):
"""
Calculate standard deviations for a static model where all parameters but `param_index` are constant.
:param n_by_param: measurements of a specific model attribute partitioned by parameter values.
Example: `{(0, 2): [2], (0, 4): [4], (0, 6): [6]}`
:param all_param_values: distinct values of each parameter.
E.g. for two parameters, the first being None, FOO, or BAR, and the second being 1, 2, 3, or 4, the argument is
`[[None, 'FOO', 'BAR'], [1, 2, 3, 4]]`.
:param param_index: index of variable parameter
:returns: (stddev matrix, mean stddev, LUT matrix)
*stddev matrix* is an ((number of parameters)-1)-dimensional matrix giving the standard deviation of each individual parameter variation partition.
E.g. for param_index == 2 and 4 parameters, stddev matrix[a][b][d] is the stddev of
measurements with param0 == all_param_values[0][a],
param1 == all_param_values[1][b], param2 variable, and
param3 == all_param_values[3][d].
*mean stddev* is the mean standard deviation of all measurements where parameter `param_index` is dynamic and all other parameters are fixed.
E.g., if parameters are a, b, c ∈ {1,2,3} and 'index' corresponds to b, then
this function returns the mean of the standard deviations of (a=1, b=*, c=1),
(a=1, b=*, c=2), and so on.
*LUT matrix* is an ((number of parameters)-1)-dimensional matrix giving the mean standard deviation of individual partitions with entirely constant parameters.
E.g. for param_index == 2 and 4 parameters, LUT matrix[a][b][d] is the mean of
stddev(param0 -> a, param1 -> b, param2 -> first distinct value, param3 -> d),
stddev(param0 -> a, param1 -> b, param2 -> second distinct value, param3 -> d),
and so on.
"""
param_values = list(remove_index_from_tuple(all_param_values, param_index))
info_shape = tuple(map(len, param_values))
# We will calculate the mean over the entire matrix later on. As we cannot
# guarantee that each entry will be filled in this loop (e.g. transitions
# whose arguments are combined using 'zip' rather than 'cartesian' always
# have missing parameter combinations), we pre-fill it with NaN and use
# np.nanmean to skip those when calculating the mean.
stddev_matrix = np.full(info_shape, np.nan)
lut_matrix = np.full(info_shape, np.nan)
for param_value in itertools.product(*param_values):
param_partition = list()
std_list = list()
for k, v in n_by_param.items():
if (*k[:param_index], *k[param_index + 1 :]) == param_value:
param_partition.extend(v)
std_list.append(np.std(v))
if len(param_partition) > 1:
matrix_index = list(range(len(param_value)))
for i in range(len(param_value)):
matrix_index[i] = param_values[i].index(param_value[i])
matrix_index = tuple(matrix_index)
stddev_matrix[matrix_index] = np.std(param_partition)
lut_matrix[matrix_index] = np.mean(std_list)
# This can (and will) happen in normal operation, e.g. when a transition's
# arguments are combined using 'zip' rather than 'cartesian'.
# elif len(param_partition) == 1:
# vprint(verbose, '[W] parameter value partition for {} contains only one element -- skipping'.format(param_value))
# else:
# vprint(verbose, '[W] parameter value partition for {} is empty'.format(param_value))
if np.all(np.isnan(stddev_matrix)):
warnings.warn(
"parameter #{} has no data partitions. stddev_matrix = {}".format(
param_index, stddev_matrix
)
)
return stddev_matrix, 0.0
return (
stddev_matrix,
np.nanmean(stddev_matrix),
lut_matrix,
) # np.mean([np.std(partition) for partition in partitions])
def _corr_by_param(attribute_data, param_values, param_index):
"""
Return correlation coefficient (`np.corrcoef`) of `attribute_data` <-> `param_values[param_index]`
A correlation coefficient close to 1 indicates that the attribute likely depends on the value of the parameter denoted by `param_index`, if it is nearly 0, it likely does not depend on it.
If any value of `param_index` is not numeric (i.e., can not be parsed as float), this function returns 0.
:param attribute_data: list or 1-D numpy array of measurements
:param param_values: list of parameter values
:param param_index: index of parameter in `by_name[*]['param']`
"""
if _all_params_are_numeric(param_values, param_index):
param_values = np.array(list((map(lambda x: x[param_index], param_values))))
try:
return np.corrcoef(attribute_data, param_values)[0, 1]
except FloatingPointError:
# Typically happens when all parameter values are identical.
# Building a correlation coefficient is pointless in this case
# -> assume no correlation
return 0.0
except ValueError:
logger.error(
"ValueError in _corr_by_param(param_index={})".format(param_index)
)
logger.error(
"while executing np.corrcoef({}, {}))".format(
attribute_data, param_values
)
)
raise
else:
return 0.0
def _compute_param_statistics(
data, param_names, param_tuples, arg_count=None, use_corrcoef=False
):
"""
Compute standard deviation and correlation coefficient on parameterized data partitions.
It is strongly recommended to vary all parameter values evenly.
For instance, given two parameters, providing only the combinations
(1, 1), (5, 1), (7, 1,) (10, 1), (1, 2), (1, 6) will lead to bogus results.
It is better to provide (1, 1), (5, 1), (1, 2), (5, 2), ... (i.e. a cross product of all individual parameter values)
arguments:
data -- measurement data (ground truth). Must be a list or 1-D numpy array.
param_names -- list of parameter names
param_tuples -- list of parameter values corresponding to the order in param_names
arg_count -- dict providing the number of functions args ("local parameters") for each function.
use_corrcoef -- use correlation coefficient instead of stddev heuristic for parameter detection
:returns: a dict with the following content:
std_static -- static parameter-unaware model error: stddev of data
std_param_lut -- static parameter-aware model error: mean stddev of data[*]
std_by_param -- static parameter-aware model error ignoring a single parameter.
dictionary with one key per parameter. The value is the mean stddev
of measurements where all other parameters are fixed and the parameter
in question is variable. E.g. std_by_param['X'] is the mean stddev of
n_by_param[(X=*, Y=..., Z=...)].
std_by_arg -- same, but ignoring a single function argument
Only set if arg_count is non-zero, empty list otherwise.
corr_by_param -- correlation coefficient
corr_by_arg -- same, but ignoring a single function argument
Only set if arg_count is non-zero, empty list otherwise.
depends_on_param -- dict(parameter_name -> Bool). True if /attribute/ behaviour probably depends on /parameter_name/
depends_on_arg -- list(bool). Same, but for function arguments, if any.
"""
ret = dict()
ret["by_param"] = by_param = partition_by_param(data, param_tuples)
ret["use_corrcoef"] = use_corrcoef
ret["_parameter_names"] = param_names
ret["distinct_values_by_param_index"] = distinct_param_values(param_tuples)
ret["distinct_values_by_param_name"] = dict()
for i, param in enumerate(param_names):
ret["distinct_values_by_param_name"][param] = ret[
"distinct_values_by_param_index"
][i]
ret["std_static"] = np.std(data)
# TODO Gewichtung? Parameterkombinationen mit wenig verfügbaren Messdaten werden
# genau so behandelt wie welchemit vielen verfügbaren Messdaten, in
# std_static haben sie dagegen weniger Gewicht
ret["std_param_lut"] = np.mean([np.std(v) for v in by_param.values()])
ret["std_by_param"] = dict()
ret["std_by_param_values"] = dict()
ret["lut_by_param_values"] = dict()
ret["std_by_arg"] = list()
ret["std_by_arg_values"] = list()
ret["lut_by_arg_values"] = list()
ret["corr_by_param"] = dict()
ret["corr_by_arg"] = list()
ret["_depends_on_param"] = dict()
ret["_depends_on_arg"] = list()
np.seterr("raise")
for param_idx, param in enumerate(param_names):
std_matrix, mean_std, lut_matrix = _std_by_param(
by_param, ret["distinct_values_by_param_index"], param_idx
)
ret["std_by_param"][param] = mean_std
ret["std_by_param_values"][param] = std_matrix
ret["lut_by_param_values"][param] = lut_matrix
ret["corr_by_param"][param] = _corr_by_param(data, param_tuples, param_idx)
ret["_depends_on_param"][param] = _depends_on_param(
ret["corr_by_param"][param],
ret["std_by_param"][param],
ret["std_param_lut"],
)
if arg_count:
for arg_index in range(arg_count):
std_matrix, mean_std, lut_matrix = _std_by_param(
by_param,
ret["distinct_values_by_param_index"],
len(param_names) + arg_index,
)
ret["std_by_arg"].append(mean_std)
ret["std_by_arg_values"].append(std_matrix)
ret["lut_by_arg_values"].append(lut_matrix)
ret["corr_by_arg"].append(
_corr_by_param(data, param_tuples, len(param_names) + arg_index)
)
if False:
ret["_depends_on_arg"].append(ret["corr_by_arg"][arg_index] > 0.1)
elif ret["std_by_arg"][arg_index] == 0:
# In general, std_param_lut < std_by_arg. So, if std_by_arg == 0, std_param_lut == 0 follows.
# This means that the variation of arg does not affect the model quality -> no influence
ret["_depends_on_arg"].append(False)
else:
ret["_depends_on_arg"].append(
ret["std_param_lut"] / ret["std_by_arg"][arg_index] < 0.5
)
return ret
def _compute_param_statistics_parallel(arg):
return {"key": arg["key"], "dict": _compute_param_statistics(*arg["args"])}
def _all_params_are_numeric(data, param_idx):
"""Check if all `data['param'][*][param_idx]` elements are numeric, as reported by `utils.is_numeric`."""
param_values = list(map(lambda x: x[param_idx], data))
if len(list(filter(is_numeric, param_values))) == len(param_values):
return True
return False
def prune_dependent_parameters(by_name, parameter_names, correlation_threshold=0.5):
"""
Remove dependent parameters from aggregate.
:param by_name: measurements partitioned by state/transition/... name and attribute, edited in-place.
by_name[name][attribute] must be a list or 1-D numpy array.
by_name[stanamete_or_trans]['param'] must be a list of parameter values.
Other dict members are left as-is
:param parameter_names: List of parameter names in the order they are used in by_name[name]['param'], edited in-place.
:param correlation_threshold: Remove parameter if absolute correlation exceeds this threshold (default: 0.5)
Model generation (and its components, such as relevant parameter detection and least squares optimization) only works if input variables (i.e., parameters)
are independent of each other. This function computes the correlation coefficient for each pair of parameters and removes those which depend on each other.
For each pair of dependent parameters, the lexically greater one is removed (e.g. "a" and "b" -> "b" is removed).
"""
parameter_indices_to_remove = list()
for parameter_combination in itertools.product(
range(len(parameter_names)), range(len(parameter_names))
):
index_1, index_2 = parameter_combination
if index_1 >= index_2:
continue
parameter_values = [list(), list()] # both parameters have a value
parameter_values_1 = list() # parameter 1 has a value
parameter_values_2 = list() # parameter 2 has a value
for name in by_name:
for measurement in by_name[name]["param"]:
value_1 = measurement[index_1]
value_2 = measurement[index_2]
if is_numeric(value_1):
parameter_values_1.append(value_1)
if is_numeric(value_2):
parameter_values_2.append(value_2)
if is_numeric(value_1) and is_numeric(value_2):
parameter_values[0].append(value_1)
parameter_values[1].append(value_2)
if len(parameter_values[0]):
# Calculating the correlation coefficient only makes sense when neither value is constant
if np.std(parameter_values_1) != 0 and np.std(parameter_values_2) != 0:
correlation = np.corrcoef(parameter_values)[0][1]
if (
correlation != np.nan
and np.abs(correlation) > correlation_threshold
):
logger.debug(
"Parameters {} <-> {} are correlated with coefficcient {}".format(
parameter_names[index_1],
parameter_names[index_2],
correlation,
)
)
if len(parameter_values_1) < len(parameter_values_2):
index_to_remove = index_1
else:
index_to_remove = index_2
logger.debug(
" Removing parameter {}".format(
parameter_names[index_to_remove]
)
)
parameter_indices_to_remove.append(index_to_remove)
remove_parameters_by_indices(by_name, parameter_names, parameter_indices_to_remove)
def remove_parameters_by_indices(by_name, parameter_names, parameter_indices_to_remove):
"""
Remove parameters listed in `parameter_indices` from aggregate `by_name` and `parameter_names`.
:param by_name: measurements partitioned by state/transition/... name and attribute, edited in-place.
by_name[name][attribute] must be a list or 1-D numpy array.
by_name[stanamete_or_trans]['param'] must be a list of parameter values.
Other dict members are left as-is
:param parameter_names: List of parameter names in the order they are used in by_name[name]['param'], edited in-place.
:param parameter_indices_to_remove: List of parameter indices to be removed
"""
# Start removal from the end of the list to avoid renumbering of list elemenets
for parameter_index in sorted(parameter_indices_to_remove, reverse=True):
for name in by_name:
for measurement in by_name[name]["param"]:
measurement.pop(parameter_index)
parameter_names.pop(parameter_index)
class ParallelParamStats:
def __init__(self):
self.queue = list()
self.map = dict()
def enqueue(self, key, attr):
self.queue.append(
{
"key": key,
"args": [
attr.data,
attr.param_names,
attr.param_values,
attr.arg_count,
],
}
)
self.map[key] = attr
def compute(self):
"""
Fit functions on previously enqueue data.
Fitting is one in parallel with one process per core.
Results can be accessed using the public ParallelParamFit.results object.
"""
with Pool() as pool:
results = pool.map(_compute_param_statistics_parallel, self.queue)
for result in results:
self.map[result["key"]].by_param = result["dict"].pop("by_param")
self.map[result["key"]].stats = ParamStats(result["dict"])
class ParamStats:
def __init__(self, data):
self.__dict__.update(data)
@classmethod
def compute_for_attr(cls, attr, use_corrcoef=False):
res = _compute_param_statistics(
attr.data,
attr.param_names,
attr.param_values,
arg_count=attr.arg_count,
use_corrcoef=use_corrcoef,
)
attr.by_param = res.pop("by_param")
attr.stats = cls(res)
def can_be_fitted(self) -> bool:
"""
Return whether a sufficient amount of distinct numeric parameter values is available, allowing a parameter-aware model to be generated.
"""
for param in self._parameter_names:
if (
len(
list(
filter(
lambda n: is_numeric(n),
self.distinct_values_by_param_name[param],
)
)
)
> 2
):
logger.debug(
"can be fitted for param {} on {}".format(
param,
list(
filter(
lambda n: is_numeric(n),
self.distinct_values_by_param_name[param],
)
),
)
)
return True
return False
def _generic_param_independence_ratio(self):
"""
Return the heuristic ratio of parameter independence.
This is not supported if the correlation coefficient is used.
A value close to 1 means no influence, a value close to 0 means high probability of influence.
"""
if self.use_corrcoef:
# not supported
raise ValueError
if self.std_static == 0:
return 0
return self.std_param_lut / self.std_static
def generic_param_dependence_ratio(self):
"""
Return the heuristic ratio of parameter dependence.
This is not supported if the correlation coefficient is used.
A value close to 0 means no influence, a value close to 1 means high probability of influence.
"""
return 1 - self._generic_param_independence_ratio()
def _param_independence_ratio(self, param: str) -> float:
"""
Return the heuristic ratio of parameter independence for param.
A value close to 1 means no influence, a value close to 0 means high probability of influence.
"""
if self.use_corrcoef:
return 1 - np.abs(self.corr_by_param[param])
if self.std_by_param[param] == 0:
# if self.std_param_lut != 0:
# raise RuntimeError(f"wat: std_by_param[{param}]==0, but std_param_lut=={self.std_param_lut} ≠ 0")
# In general, std_param_lut < std_by_param. So, if std_by_param == 0, std_param_lut == 0 follows.
# This means that the variation of param does not affect the model quality -> no influence, return 1
return 1.0
return self.std_param_lut / self.std_by_param[param]
def param_dependence_ratio(self, param: str) -> float:
"""
Return the heuristic ratio of parameter dependence for param.
A value close to 0 means no influence, a value close to 1 means high probability of influence.
:param param: parameter name
:returns: parameter dependence (float between 0 == no influence and 1 == high probability of influence)
"""
return 1 - self._param_independence_ratio(param)
def _arg_independence_ratio(self, arg_index):
if self.use_corrcoef:
return 1 - np.abs(self.corr_by_arg[arg_index])
if self.std_by_arg[arg_index] == 0:
if self.std_param_lut != 0:
raise RuntimeError(
f"wat: std_by_arg[{arg_index}]==0, but std_param_lut=={self.std_param_lut} ≠ 0"
)
# In general, std_param_lut < std_by_arg. So, if std_by_arg == 0, std_param_lut == 0 follows.
# This means that the variation of arg does not affect the model quality -> no influence, return 1
return 1
return self.std_param_lut / self.std_by_arg[arg_index]
def arg_dependence_ratio(self, arg_index: int) -> float:
return 1 - self._arg_independence_ratio(arg_index)
# This heuristic is very similar to the "function is not much better than
# median" checks in get_fitted. So far, doing it here as well is mostly
# a performance and not an algorithm quality decision.
# --df, 2018-04-18
def depends_on_param(self, param):
"""Return whether attribute of state_or_trans depens on param."""
return self._depends_on_param[param]
# See notes on depends_on_param
def depends_on_arg(self, arg_index):
"""Return whether attribute of state_or_trans depens on arg_index."""
return self._depends_on_arg[arg_index]
class ModelAttribute:
def __init__(self, name, attr, data, param_values, param_names, arg_count=0):
# Data for model generation
self.data = np.array(data)
# Meta data
self.name = name
self.attr = attr
self.param_values = param_values
self.param_names = sorted(param_names)
self.arg_count = arg_count
# Static model used as lower bound of model accuracy
self.mean = np.mean(data)
self.median = np.median(data)
# LUT model used as upper bound of model accuracy
self.by_param = None # set via ParallelParamStats
# Split (decision tree) information
self.split = None
# param model override
self.function_override = None
# The best model we have. May be Static, Split, or Param (and later perhaps Substate)
self.model_function = None
def __repr__(self):
mean = np.mean(self.data)
return f"ModelAttribute<{self.name}, {self.attr}, mean={mean}>"
def to_json(self):
ret = {
"paramNames": self.param_names,
"argCount": self.arg_count,
"modelFunction": self.model_function.to_json(),
}
return ret
def get_static(self, use_mean=False):
if use_mean:
return self.mean
return self.median
def get_lut(self, param, use_mean=False):
if use_mean:
return np.mean(self.by_param[param])
return np.median(self.by_param[param])
def build_dtree(self):
split_param_index = self.get_split_param_index()
if split_param_index is None:
return
distinct_values = self.stats.distinct_values_by_param_index[split_param_index]
tt1 = list(
map(
lambda i: self.param_values[i][split_param_index] == distinct_values[0],
range(len(self.param_values)),
)
)
tt2 = np.invert(tt1)
pv1 = list()
pv2 = list()
for i, param_tuple in enumerate(self.param_values):
if tt1[i]:
pv1.append(param_tuple)
else:
pv2.append(param_tuple)
# print(
# f">>> split {self.name} {self.attr} by param #{split_param_index}"
# )
child1 = ModelAttribute(
self.name, self.attr, self.data[tt1], pv1, self.param_names, self.arg_count
)
child2 = ModelAttribute(
self.name, self.attr, self.data[tt2], pv2, self.param_names, self.arg_count
)
ParamStats.compute_for_attr(child1)
ParamStats.compute_for_attr(child2)
child1.build_dtree()
child2.build_dtree()
self.split = (
split_param_index,
{distinct_values[0]: child1, distinct_values[1]: child2},
)
# print(
# f"<<< split {self.name} {self.attr} by param #{split_param_index}"
# )
# None -> kein split notwendig
# andernfalls: Parameter-Index, anhand dessen eine Decision Tree-Ebene aufgespannt wird
# (Kinder sind wiederum ModelAttributes, in denen dieser Parameter konstant ist)
def get_split_param_index(self):
if not self.param_names:
return None
std_by_param = list()
for param_index, param_name in enumerate(self.param_names):
distinct_values = self.stats.distinct_values_by_param_index[param_index]
if self.stats.depends_on_param(param_name) and len(distinct_values) == 2:
val1 = list(
map(
lambda i: self.param_values[i][param_index]
== distinct_values[0],
range(len(self.param_values)),
)
)
val2 = np.invert(val1)
val1_std = np.std(self.data[val1])
val2_std = np.std(self.data[val2])
std_by_param.append(np.mean([val1_std, val2_std]))
else:
std_by_param.append(np.inf)
for arg_index in range(self.arg_count):
distinct_values = self.stats.distinct_values_by_param_index[
len(self.param_names) + arg_index
]
if self.stats.depends_on_arg(arg_index) and len(distinct_values) == 2:
val1 = list(
map(
lambda i: self.param_values[i][
len(self.param_names) + arg_index
]
== distinct_values[0],
range(len(self.param_values)),
)
)
val2 = np.invert(val1)
val1_std = np.std(self.data[val1])
val2_std = np.std(self.data[val2])
std_by_param.append(np.mean([val1_std, val2_std]))
else:
std_by_param.append(np.inf)
split_param_index = np.argmin(std_by_param)
split_std = std_by_param[split_param_index]
if split_std == np.inf:
return None
return split_param_index
def get_data_for_paramfit(self, safe_functions_enabled=False):
if self.split:
return self.get_data_for_paramfit_split(
safe_functions_enabled=safe_functions_enabled
)
else:
return self.get_data_for_paramfit_this(
safe_functions_enabled=safe_functions_enabled
)
def get_data_for_paramfit_split(self, safe_functions_enabled=False):
split_param_index, child_by_param_value = self.split
ret = list()
for param_value, child in child_by_param_value.items():
child_ret = child.get_data_for_paramfit(
safe_functions_enabled=safe_functions_enabled
)
for key, param, val in child_ret:
ret.append((key[:2] + (param_value,) + key[2:], param, val))
return ret
def get_data_for_paramfit_this(self, safe_functions_enabled=False):
ret = list()
for param_index, param_name in enumerate(self.param_names):
if self.stats.depends_on_param(param_name):
ret.append(
(
(self.name, self.attr),
param_name,
(self.by_param, param_index, safe_functions_enabled),
)
)
if self.arg_count:
for arg_index in range(self.arg_count):
if self.stats.depends_on_arg(arg_index):
ret.append(
(
(self.name, self.attr),
arg_index,
(
self.by_param,
len(self.param_names) + arg_index,
safe_functions_enabled,
),
)
)
return ret
def set_data_from_paramfit(self, paramfit, prefix=tuple()):
if self.split:
self.set_data_from_paramfit_split(paramfit, prefix)
else:
self.set_data_from_paramfit_this(paramfit, prefix)
def set_data_from_paramfit_split(self, paramfit, prefix):
split_param_index, child_by_param_value = self.split
function_map = {
"split_by": split_param_index,
"child": dict(),
"child_static": dict(),
}
function_child = dict()
info_child = dict()
for param_value, child in child_by_param_value.items():
child.set_data_from_paramfit(paramfit, prefix + (param_value,))
function_child[param_value] = child.model_function
self.model_function = df.SplitFunction(split_param_index, function_child)
def set_data_from_paramfit_this(self, paramfit, prefix):
fit_result = paramfit.get_result((self.name, self.attr) + prefix)
self.model_function = df.StaticFunction(self.median)
if self.function_override is not None:
function_str = self.function_override
x = df.AnalyticFunction(
function_str, self.param_names, self.arg_count, fit_by_param=fit_result
)
x.fit(self.by_param)
if x.fit_success:
self.model_function = x
elif os.getenv("DFATOOL_NO_PARAM"):
pass
elif len(fit_result.keys()):
x = df.analytic.function_powerset(
fit_result, self.param_names, self.arg_count
)
x.fit(self.by_param)
if x.fit_success:
self.model_function = x
|