1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
|
#!/usr/bin/env python3
import hashlib
import json
import logging
import numpy as np
import os
from multiprocessing import Pool
from .utils import NpEncoder
logger = logging.getLogger(__name__)
def PELT_get_changepoints(index, penalty, algo):
res = (index, penalty, algo.predict(pen=penalty))
return res
# calculates the raw_states for a measurement. num_measurement is used to identify the return value
# penalty, model and jump are directly passed to pelt
def PELT_get_raw_states(num_measurement, algo, penalty):
changepoints = algo.predict(pen=penalty)
substates = list()
start_index = 0
end_index = 0
# calc metrics for all states
for changepoint in changepoints:
# start_index of state is end_index of previous one
# (Transitions are instantaneous)
start_index = end_index
end_index = changepoint - 1
substate = (start_index, end_index)
substates.append(substate)
return num_measurement, substates
class PELT:
def __init__(self, **kwargs):
"""
Create PELT instance for changepoint detection using Pelt or Dynp.
See <https://centre-borelli.github.io/ruptures-docs/user-guide/> for configuration details.
:param algo: Algorithm to use, either "pelt" or "dynp". Default: "pelt"
:param model: Distance / Optimization metric. Default: "l1"
:param jump: step size for changepoint detection, higher values give coarser results. Default: 1
:param min_dist: minimum number of data samples between two changepoints. Default: 10
:param name_filter: Unused
:param refinement_threshold: perform changepoint detection if p1 and median / p99 and median differ by more than `refinement_threshold`
for at least 1/3 of traces
:param range_min: Minimum penalty for penalty detection, inclusive. Default: 1
:param range_max: Maximum penalty for penalty detection, exclusive. default: 89
:param with_multiprocessing: Use multiprocessing to parallelize changepoint detection.
Set to False when calling PELT From within a parallelized function. Default: True
:param tail_state_only: Only report tail states (i.e., only report the last detected changepoint).
"""
self.algo = "pelt"
self.model = "l1"
self.jump = 1
self.min_dist = 10
self.name_filter = None
self.refinement_threshold = 200e-6 # 200 µW
self.range_min = 1
self.range_max = 89
self.stretch = 1
self.with_multiprocessing = True
self.cache_dir = "cache"
self.tail_state_only = False
self.__dict__.update(kwargs)
self.jump = int(self.jump)
self.min_dist = int(self.min_dist)
self.stretch = int(self.stretch)
if os.getenv("DFATOOL_PELT_MODEL"):
# https://centre-borelli.github.io/ruptures-docs/user-guide/costs/costl1/
self.model = os.getenv("DFATOOL_PELT_MODEL")
if os.getenv("DFATOOL_PELT_JUMP"):
self.jump = int(os.getenv("DFATOOL_PELT_JUMP"))
if os.getenv("DFATOOL_PELT_MIN_DIST"):
self.min_dist = int(os.getenv("DFATOOL_PELT_MIN_DIST"))
def needs_refinement_pelt(self, signals):
import ruptures
count = 0
for signal in signals:
if len(signal) < 100:
continue
algo = ruptures.Pelt(
model=self.model, jump=len(signal) // 100, min_size=self.min_dist
)
algo = algo.fit(self.norm_signal(signal))
# Empirically, most sub-state detectino results use a penalty
# in the range 30 to 60. If there's no changepoints with a
# penalty of 20, there's also no changepoins with any penalty
# > 20, so we can safely skip changepoint detection altogether.
changepoints = algo.predict(pen=20)
if not changepoints:
continue
if len(changepoints) and changepoints[-1] == len(signal):
changepoints.pop()
if len(changepoints) and changepoints[0] == 0:
changepoints.pop(0)
if changepoints:
count += 1
refinement_ratio = count / len(signals)
return refinement_ratio > 0.3
def needs_refinement_percentile(self, signals):
count = 0
for signal in signals:
if len(signal) < 30:
continue
p1, median, p99 = np.percentile(signal[5:-5], (1, 50, 99))
if median - p1 > self.refinement_threshold:
count += 1
elif p99 - median > self.refinement_threshold:
count += 1
refinement_ratio = count / len(signals)
return refinement_ratio > 0.3
# signals: a set of uW measurements belonging to a single parameter configuration (i.e., a single by_param entry)
def needs_refinement(self, signals):
return self.needs_refinement_pelt(signals)
def norm_signal(self, signal, scaler=25):
max_val = max(np.abs(signal))
normed_signal = np.zeros(shape=len(signal))
for i, signal_i in enumerate(signal):
normed_signal[i] = signal_i / max_val
normed_signal[i] = normed_signal[i] * scaler
return normed_signal
def cache_key(self, traces, penalty, num_changepoints):
config = [
traces,
penalty,
num_changepoints,
self.algo,
self.model,
self.jump,
self.min_dist,
self.range_min,
self.range_max,
self.stretch,
]
cache_key = hashlib.sha256(
json.dumps(config, cls=NpEncoder).encode()
).hexdigest()
return cache_key
def save_cache(self, traces, penalty, num_changepoints, data):
"""
Save changepoint detection results (data) for given configuration (self, penalty, num_changepoints) and traces.
:param traces: List of traces
:param penalty: fixed penalty, may be None
:param num_changepoints: fixed number of changepoints, may be None
:param data: data returned by calculate_penalty_and_changepoints
"""
if self.cache_dir is None:
return
cache_key = self.cache_key(traces, penalty, num_changepoints)
try:
os.mkdir(self.cache_dir)
except FileExistsError:
pass
try:
os.mkdir(f"{self.cache_dir}/{cache_key[:2]}")
except FileExistsError:
pass
with open(f"{self.cache_dir}/{cache_key[:2]}/pelt-{cache_key}.json", "w") as f:
json.dump(data, f, cls=NpEncoder)
def load_cache(self, traces, penalty, num_changepoints):
"""
Return cached changepoints for given configuration (self, penalty, num_changepoints) and data (traces).
:param traces: List of traces
:param penalty: fixed penalty, may be None
:param num_changepoints: fixed number of changepoints, may be None
:returns: [changepoints for traces[0], changepoints for traces[1], ...] if cache data is present, None otherwise
"""
cache_key = self.cache_key(traces, penalty, num_changepoints)
try:
with open(
f"{self.cache_dir}/{cache_key[:2]}/pelt-{cache_key}.json", "r"
) as f:
return json.load(f)
except FileNotFoundError:
return None
except json.decoder.JSONDecodeError:
logger.warning(
f"Ignoring invalid cache entry {self.cache_dir}/{cache_key[:2]}/pelt-{cache_key}.json"
)
return None
def get_penalty_and_changepoints(self, traces, penalty=None, num_changepoints=None):
"""
Return penalties and changepoints for a list of traces (of e.g. power over time), with caching.
:param traces: single data trace or list of data traces for changepoint detection.
Either traces = [data value, data value, data value, ...]
or traces[i] = [data value, data value, data value, ...]
:param penalty: return changepoints for given penalty instead of attempting to find one
:param num_changepoints: perform Dynp instead of Pelt with num_changepoints changepoints
:returns: Either [changepoints for traces[0], changespoints for traces[1], ...] or changepoints for traces
changespoints for traces := (penalty, changepoint_dict)
changepoint_dict[penalty] := [traces[i] index of first changepoint, traces[i] index of second changepoint, ...]
"""
list_of_lists = type(traces[0]) is list or type(traces[0]) is np.ndarray
if not list_of_lists:
traces = [traces]
data = self.load_cache(traces, penalty, num_changepoints)
if data:
for res in data:
if type(res[1]) is dict:
str_keys = list(res[1].keys())
for k in str_keys:
res[1][int(k)] = res[1].pop(k)
if self.tail_state_only:
for entry in data:
for penalty in entry[1]:
entry[1][penalty] = entry[1][penalty][-1:]
if list_of_lists:
return data
return data[0]
data = self.calculate_penalty_and_changepoints(
traces, penalty, num_changepoints
)
self.save_cache(traces, penalty, num_changepoints, data)
if self.tail_state_only:
for entry in data:
for penalty in entry[1]:
entry[1][penalty] = entry[1][penalty][-1:]
if list_of_lists:
return data
return data[0]
def calculate_penalty_and_changepoints(
self, traces, penalty=None, num_changepoints=None
):
"""
Return penalties and changepoints for a list of traces (of e.g. power over time), without cache.
:param traces: list of data traces for changepoint detection. traces[i] = [data value, data value, data value, ...]
:param penalty: return changepoints for given penalty instead of attempting to find one
:param num_changepoints: perform Dynp instead of Pelt with num_changepoints changepoints
:returns: [changepoints for traces[0], changespoints for traces[1], ...]
changespoints for traces[i] := (penalty, changepoint_dict)
changepoint_dict[penalty] := [traces[i] index of first changepoint, traces[i] index of second changepoint, ...]
"""
# imported here as ruptures is only used for changepoint detection.
# This way, dfatool can be used without having ruptures installed as
# long as --pelt isn't active.
import ruptures
if self.stretch > 1:
traces = list(
map(
lambda trace: np.interp(
np.linspace(
0, len(trace) - 1, (len(trace) - 1) * self.stretch + 1
),
np.arange(len(trace)),
trace,
),
traces,
)
)
elif self.stretch < -1:
ds_factor = -self.stretch
new_traces = list()
for trace in traces:
if trace.shape[0] % ds_factor:
trace = np.array(
list(trace)
+ [
trace[-1]
for i in range(ds_factor - (trace.shape[0] % ds_factor))
]
)
new_traces.append(trace.reshape(-1, ds_factor).mean(axis=1))
traces = new_traces
algos = list()
queue = list()
changepoints_by_penalty_by_trace = list()
results = list()
for i in range(len(traces)):
if self.algo == "dynp":
# https://centre-borelli.github.io/ruptures-docs/user-guide/detection/dynp/
algo = ruptures.Dynp(
model=self.model, jump=self.jump, min_size=self.min_dist
)
else:
# https://centre-borelli.github.io/ruptures-docs/user-guide/detection/pelt/
algo = ruptures.Pelt(
model=self.model, jump=self.jump, min_size=self.min_dist
)
algo = algo.fit(self.norm_signal(traces[i]))
algos.append(algo)
for i in range(len(traces)):
changepoints_by_penalty_by_trace.append(dict())
if penalty is not None:
queue.append((i, penalty, algos[i]))
elif self.algo == "dynp" and num_changepoints is not None:
queue.append((i, None, algos[i]))
else:
for range_penalty in range(self.range_min, self.range_max):
queue.append((i, range_penalty, algos[i]))
if self.with_multiprocessing:
with Pool() as pool:
changepoints_by_trace = pool.starmap(PELT_get_changepoints, queue)
else:
changepoints_by_trace = map(lambda x: PELT_get_changepoints(*x), queue)
for i, range_penalty, changepoints in changepoints_by_trace:
if len(changepoints) and changepoints[-1] == len(traces[i]):
changepoints.pop()
if len(changepoints) and changepoints[0] == 0:
changepoints.pop(0)
if self.stretch > 1:
changepoints = list(
np.array(
np.around(np.array(changepoints) / self.stretch), dtype=np.int
)
)
elif self.stretch < -1:
ds_factor = -self.stretch
changepoints = list(
np.array(
np.around(np.array(changepoints) * ds_factor), dtype=np.int
)
)
changepoints_by_penalty_by_trace[i][range_penalty] = changepoints
for i in range(len(traces)):
changepoints_by_penalty = changepoints_by_penalty_by_trace[i]
if penalty is not None:
results.append((penalty, changepoints_by_penalty))
elif self.algo == "dynp" and num_changepoints is not None:
results.append((None, {0: changepoints_by_penalty[None]}))
else:
results.append(
(
self.find_penalty(changepoints_by_penalty),
changepoints_by_penalty,
)
)
return results
def find_penalty(self, changepoints_by_penalty):
changepoint_counts = list()
for i in range(self.range_min, self.range_max):
changepoint_counts.append(len(changepoints_by_penalty[i]))
start_index = -1
end_index = -1
longest_start = -1
longest_end = -1
prev_val = -1
for i, changepoint_count in enumerate(changepoint_counts):
if changepoint_count != prev_val:
end_index = i - 1
if end_index - start_index > longest_end - longest_start:
longest_start = start_index
longest_end = end_index
start_index = i
if i == len(changepoint_counts) - 1:
end_index = i
if end_index - start_index > longest_end - longest_start:
longest_start = start_index
longest_end = end_index
start_index = i
prev_val = changepoint_count
middle_of_plateau = longest_start + (longest_end - longest_start) // 2
return self.range_min + middle_of_plateau
def get_changepoints(self, traces, **kwargs):
results = self.get_penalty_and_changepoints(traces, **kwargs)
if type(results) is list:
return list(map(lambda res: res[1][res[0]], results))
return results[1][results[0]]
def get_penalty(self, traces, **kwargs):
results = self.get_penalty_and_changepoints(traces, **kwargs)
if type(results) is list:
return list(map(lambda res: res[0]))
return res[0]
def calc_raw_states(
self,
timestamps,
signals,
changepoints_by_signal,
num_changepoints,
opt_model=None,
):
"""
Calculate substates for signals (assumed to belong to a single parameter configuration).
:returns: (substate_counts, substate_data)
substates_counts = [number of substates in first changepoints_by_signal entry, number of substates in second entry, ...]
substate_data = [data for first sub-state, data for second sub-state, ...]
data = {"duration": [durations of corresponding sub-state in signals[i] where changepoints_by_signal[i] == num_changepoints]}
Note that len(substate_counts) >= len(substate_data). substate_counts gives the number of sub-states of each signal in signals
(substate_counts[i] == number of substates in signals[i]). substate_data only contains entries for signals which have
num_changepoints + 1 substates.
List of substates with duration and mean power: [(substate 1 duration, substate 1 power), ...]
"""
substate_data = list()
substate_counts = list()
usable_measurements = list()
expected_substate_count = num_changepoints + 1
for i, changepoints in enumerate(changepoints_by_signal):
substates = list()
start_index = 0
end_index = 0
for changepoint in changepoints:
# start_index of state is end_index of previous one
# (Transitions are instantaneous)
start_index = end_index
end_index = changepoint
substate = (start_index, end_index)
substates.append(substate)
substates.append((end_index, len(signals[i]) - 1))
substate_counts.append(len(substates))
if len(substates) == expected_substate_count:
usable_measurements.append((i, substates))
if len(usable_measurements) <= len(changepoints_by_signal) * 0.5:
logger.info(
f"Only {len(usable_measurements)} of {len(changepoints_by_signal)} measurements have {expected_substate_count} sub-states. Try lowering the jump step size"
)
else:
logger.debug(
f"{len(usable_measurements)} of {len(changepoints_by_signal)} measurements have {expected_substate_count} sub-states"
)
for i in range(expected_substate_count):
substate_data.append(
{
"duration": list(),
"power": list(),
"power_std": list(),
"signals_index": list(),
}
)
for num_measurement, substates in usable_measurements:
for i, substate in enumerate(substates):
power_trace = signals[num_measurement][substate[0] : substate[1]]
mean_power = np.mean(power_trace)
std_power = np.std(power_trace)
duration = (
timestamps[num_measurement][substate[1]]
- timestamps[num_measurement][substate[0]]
)
substate_data[i]["duration"].append(duration)
substate_data[i]["power"].append(mean_power)
substate_data[i]["power_std"].append(std_power)
substate_data[i]["signals_index"].append(num_measurement)
return substate_counts, substate_data
|