1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
#!/usr/bin/env python3
import logging
import numpy as np
import os
from multiprocessing import Pool
logger = logging.getLogger(__name__)
def PELT_get_changepoints(algo, penalty):
res = (penalty, algo.predict(pen=penalty))
return res
# calculates the raw_states for a measurement. num_measurement is used to identify the return value
# penalty, model and jump are directly passed to pelt
def PELT_get_raw_states(num_measurement, algo, penalty):
changepoints = algo.predict(pen=penalty)
substates = list()
start_index = 0
end_index = 0
# calc metrics for all states
for changepoint in changepoints:
# start_index of state is end_index of previous one
# (Transitions are instantaneous)
start_index = end_index
end_index = changepoint - 1
substate = (start_index, end_index)
substates.append(substate)
return num_measurement, substates
class PELT:
def __init__(self, **kwargs):
self.algo = "pelt"
self.model = "l1"
self.jump = 1
self.min_dist = 10
self.num_samples = None
self.name_filter = None
self.refinement_threshold = 200e-6 # 200 µW
self.range_min = 0
self.range_max = 88
self.stretch = 1
self.with_multiprocessing = True
self.__dict__.update(kwargs)
self.jump = int(self.jump)
self.min_dist = int(self.min_dist)
self.stretch = int(self.stretch)
if os.getenv("DFATOOL_PELT_MODEL"):
# https://centre-borelli.github.io/ruptures-docs/user-guide/costs/costl1/
self.model = os.getenv("DFATOOL_PELT_MODEL")
if os.getenv("DFATOOL_PELT_JUMP"):
self.jump = int(os.getenv("DFATOOL_PELT_JUMP"))
if os.getenv("DFATOOL_PELT_MIN_DIST"):
self.min_dist = int(os.getenv("DFATOOL_PELT_MIN_DIST"))
# signals: a set of uW measurements belonging to a single parameter configuration (i.e., a single by_param entry)
def needs_refinement(self, signals):
count = 0
for signal in signals:
if len(signal) < 30:
continue
p1, median, p99 = np.percentile(signal[5:-5], (1, 50, 99))
if median - p1 > self.refinement_threshold:
count += 1
elif p99 - median > self.refinement_threshold:
count += 1
refinement_ratio = count / len(signals)
return refinement_ratio > 0.3
def norm_signal(self, signal, scaler=25):
max_val = max(np.abs(signal))
normed_signal = np.zeros(shape=len(signal))
for i, signal_i in enumerate(signal):
normed_signal[i] = signal_i / max_val
normed_signal[i] = normed_signal[i] * scaler
return normed_signal
def get_penalty_and_changepoints(self, signal, penalty=None, num_changepoints=None):
# imported here as ruptures is only used for changepoint detection.
# This way, dfatool can be used without having ruptures installed as
# long as --pelt isn't active.
import ruptures
if self.stretch != 1:
signal = np.interp(
np.linspace(0, len(signal) - 1, (len(signal) - 1) * self.stretch + 1),
np.arange(len(signal)),
signal,
)
if self.num_samples is not None:
if len(signal) > self.num_samples:
self.jump = len(signal) // int(self.num_samples)
else:
self.jump = 1
if self.algo == "dynp":
# https://centre-borelli.github.io/ruptures-docs/user-guide/detection/dynp/
algo = ruptures.Dynp(
model=self.model, jump=self.jump, min_size=self.min_dist
)
else:
# https://centre-borelli.github.io/ruptures-docs/user-guide/detection/pelt/
algo = ruptures.Pelt(
model=self.model, jump=self.jump, min_size=self.min_dist
)
algo = algo.fit(self.norm_signal(signal))
if penalty is not None:
changepoints = algo.predict(pen=penalty)
if len(changepoints) and changepoints[-1] == len(signal):
changepoints.pop()
if len(changepoints) and changepoints[0] == 0:
changepoints.pop(0)
if self.stretch != 1:
changepoints = np.array(
np.around(np.array(changepoints) / self.stretch), dtype=np.int
)
return penalty, changepoints
if self.algo == "dynp" and num_changepoints is not None:
changepoints = algo.predict(n_bkps=num_changepoints)
if len(changepoints) and changepoints[-1] == len(signal):
changepoints.pop()
if len(changepoints) and changepoints[0] == 0:
changepoints.pop(0)
if self.stretch != 1:
changepoints = np.array(
np.around(np.array(changepoints) / self.stretch), dtype=np.int
)
return None, changepoints
queue = list()
for i in range(self.range_min, self.range_max):
queue.append((algo, i))
if self.with_multiprocessing:
with Pool() as pool:
changepoints = pool.starmap(PELT_get_changepoints, queue)
else:
changepoints = map(lambda x: PELT_get_changepoints(*x), queue)
changepoints_by_penalty = dict()
for res in changepoints:
if len(res[1]) > 0 and res[1][-1] == len(signal):
res[1].pop()
if self.stretch != 1:
res = (
res[0],
np.array(np.around(np.array(res[1]) / self.stretch), dtype=np.int),
)
changepoints_by_penalty[res[0]] = res[1]
changepoint_counts = list()
for i in range(self.range_min, self.range_max):
changepoint_counts.append(len(changepoints_by_penalty[i]))
start_index = -1
end_index = -1
longest_start = -1
longest_end = -1
prev_val = -1
for i, num_changepoints in enumerate(changepoint_counts):
if num_changepoints != prev_val:
end_index = i - 1
if end_index - start_index > longest_end - longest_start:
longest_start = start_index
longest_end = end_index
start_index = i
if i == len(changepoint_counts) - 1:
end_index = i
if end_index - start_index > longest_end - longest_start:
longest_start = start_index
longest_end = end_index
start_index = i
prev_val = num_changepoints
middle_of_plateau = longest_start + (longest_start - longest_start) // 2
changepoints = np.array(changepoints_by_penalty[middle_of_plateau])
return middle_of_plateau, changepoints_by_penalty
def get_changepoints(self, signal, **kwargs):
penalty, changepoints_by_penalty = self.get_penalty_and_changepoints(
signal, **kwargs
)
return changepoints_by_penalty[penalty]
def get_penalty(self, signal, **kwargs):
penalty, _ = self.get_penalty_and_changepoints(signal, **kwargs)
return penalty
def calc_raw_states(
self,
timestamps,
signals,
changepoints_by_signal,
num_changepoints,
opt_model=None,
):
"""
Calculate substates for signals (assumed to be long to a single parameter configuration).
:returns: List of substates with duration and mean power: [(substate 1 duration, substate 1 power), ...]
"""
substate_data = list()
substate_counts = list()
usable_measurements = list()
expected_substate_count = num_changepoints
for i, changepoints in enumerate(changepoints_by_signal):
substates = list()
start_index = 0
end_index = 0
# calc metrics for all states
for changepoint in changepoints:
# start_index of state is end_index of previous one
# (Transitions are instantaneous)
start_index = end_index
end_index = changepoint - 1
substate = (start_index, end_index)
substates.append(substate)
substate_counts.append(len(substates))
if len(substates) == expected_substate_count:
usable_measurements.append((i, substates))
if len(usable_measurements) <= len(changepoints_by_signal) * 0.5:
logger.info(
f"Only {len(usable_measurements)} of {len(changepoints_by_signal)} measurements have {expected_substate_count} sub-states. Try lowering the jump step size"
)
else:
logger.debug(
f"{len(usable_measurements)} of {len(changepoints_by_signal)} measurements have {expected_substate_count} sub-states"
)
for i in range(expected_substate_count):
substate_data.append(
{"duration": list(), "power": list(), "power_std": list()}
)
for num_measurement, substates in usable_measurements:
for i, substate in enumerate(substates):
power_trace = signals[num_measurement][substate[0] : substate[1]]
mean_power = np.mean(power_trace)
std_power = np.std(power_trace)
duration = (
timestamps[num_measurement][substate[1]]
- timestamps[num_measurement][substate[0]]
)
substate_data[i]["duration"].append(duration)
substate_data[i]["power"].append(mean_power)
substate_data[i]["power_std"].append(std_power)
return substate_counts, substate_data
|