1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
#!/usr/bin/env python3
import hashlib
import json
import logging
import numpy as np
import os
from multiprocessing import Pool
from .utils import NpEncoder
logger = logging.getLogger(__name__)
def PELT_get_changepoints(index, penalty, algo):
res = (index, penalty, algo.predict(pen=penalty))
return res
# calculates the raw_states for a measurement. num_measurement is used to identify the return value
# penalty, model and jump are directly passed to pelt
def PELT_get_raw_states(num_measurement, algo, penalty):
changepoints = algo.predict(pen=penalty)
substates = list()
start_index = 0
end_index = 0
# calc metrics for all states
for changepoint in changepoints:
# start_index of state is end_index of previous one
# (Transitions are instantaneous)
start_index = end_index
end_index = changepoint - 1
substate = (start_index, end_index)
substates.append(substate)
return num_measurement, substates
class PELT:
def __init__(self, **kwargs):
self.algo = "pelt"
self.model = "l1"
self.jump = 1
self.min_dist = 10
self.name_filter = None
self.refinement_threshold = 200e-6 # 200 µW
self.range_min = 1
self.range_max = 89
self.stretch = 1
self.with_multiprocessing = True
self.__dict__.update(kwargs)
self.jump = int(self.jump)
self.min_dist = int(self.min_dist)
self.stretch = int(self.stretch)
self.cache_dir = "cache"
if os.getenv("DFATOOL_PELT_MODEL"):
# https://centre-borelli.github.io/ruptures-docs/user-guide/costs/costl1/
self.model = os.getenv("DFATOOL_PELT_MODEL")
if os.getenv("DFATOOL_PELT_JUMP"):
self.jump = int(os.getenv("DFATOOL_PELT_JUMP"))
if os.getenv("DFATOOL_PELT_MIN_DIST"):
self.min_dist = int(os.getenv("DFATOOL_PELT_MIN_DIST"))
# signals: a set of uW measurements belonging to a single parameter configuration (i.e., a single by_param entry)
def needs_refinement(self, signals):
count = 0
for signal in signals:
if len(signal) < 30:
continue
p1, median, p99 = np.percentile(signal[5:-5], (1, 50, 99))
if median - p1 > self.refinement_threshold:
count += 1
elif p99 - median > self.refinement_threshold:
count += 1
refinement_ratio = count / len(signals)
return refinement_ratio > 0.3
def norm_signal(self, signal, scaler=25):
max_val = max(np.abs(signal))
normed_signal = np.zeros(shape=len(signal))
for i, signal_i in enumerate(signal):
normed_signal[i] = signal_i / max_val
normed_signal[i] = normed_signal[i] * scaler
return normed_signal
def cache_key(self, traces, penalty, num_changepoints):
config = [
traces,
penalty,
num_changepoints,
self.algo,
self.model,
self.jump,
self.min_dist,
self.range_min,
self.range_max,
self.stretch,
]
cache_key = hashlib.sha256(
json.dumps(config, cls=NpEncoder).encode()
).hexdigest()
return cache_key
def save_cache(self, traces, penalty, num_changepoints, data):
if self.cache_dir is None:
return
cache_key = self.cache_key(traces, penalty, num_changepoints)
try:
os.mkdir(self.cache_dir)
except FileExistsError:
pass
try:
os.mkdir(f"{self.cache_dir}/{cache_key[:2]}")
except FileExistsError:
pass
with open(f"{self.cache_dir}/{cache_key[:2]}/pelt-{cache_key}.json", "w") as f:
json.dump(data, f)
def load_cache(self, traces, penalty, num_changepoints):
cache_key = self.cache_key(traces, penalty, num_changepoints)
try:
with open(
f"{self.cache_dir}/{cache_key[:2]}/pelt-{cache_key}.json", "r"
) as f:
return json.load(f)
except FileNotFoundError:
return None
def get_penalty_and_changepoints(self, traces, penalty=None, num_changepoints=None):
data = self.load_cache(traces, penalty, num_changepoints)
if data:
for res in data:
if type(res[1]) is dict:
str_keys = list(res[1].keys())
for k in str_keys:
res[1][int(k)] = res[1].pop(k)
return data
data = self.calculate_penalty_and_changepoints(
traces, penalty, num_changepoints
)
self.save_cache(traces, penalty, num_changepoints, data)
return data
def calculate_penalty_and_changepoints(
self, traces, penalty=None, num_changepoints=None
):
# imported here as ruptures is only used for changepoint detection.
# This way, dfatool can be used without having ruptures installed as
# long as --pelt isn't active.
import ruptures
list_of_lists = type(traces[0]) is list or type(traces[0]) is np.ndarray
if not list_of_lists:
traces = [traces]
if self.stretch != 1:
traces = list(
map(
lambda trace: np.interp(
np.linspace(
0, len(trace) - 1, (len(trace) - 1) * self.stretch + 1
),
np.arange(len(trace)),
trace,
),
traces,
)
)
algos = list()
queue = list()
changepoints_by_penalty_by_trace = list()
results = list()
for i in range(len(traces)):
if self.algo == "dynp":
# https://centre-borelli.github.io/ruptures-docs/user-guide/detection/dynp/
algo = ruptures.Dynp(
model=self.model, jump=self.jump, min_size=self.min_dist
)
else:
# https://centre-borelli.github.io/ruptures-docs/user-guide/detection/pelt/
algo = ruptures.Pelt(
model=self.model, jump=self.jump, min_size=self.min_dist
)
algo = algo.fit(self.norm_signal(traces[i]))
algos.append(algo)
for i in range(len(traces)):
changepoints_by_penalty_by_trace.append(dict())
if penalty is not None:
queue.append((i, penalty, algos[i]))
elif self.algo == "dynp" and num_changepoints is not None:
queue.append((i, None, algos[i]))
else:
for range_penalty in range(self.range_min, self.range_max):
queue.append((i, range_penalty, algos[i]))
if self.with_multiprocessing:
with Pool() as pool:
changepoints_by_trace = pool.starmap(PELT_get_changepoints, queue)
else:
changepoints_by_trace = map(lambda x: PELT_get_changepoints(*x), queue)
for i, range_penalty, changepoints in changepoints_by_trace:
if len(changepoints) and changepoints[-1] == len(traces[i]):
changepoints.pop()
if len(changepoints) and changepoints[0] == 0:
changepoints.pop(0)
if self.stretch != 1:
changepoints = np.array(
np.around(np.array(changepoints) / self.stretch), dtype=np.int
)
changepoints_by_penalty_by_trace[i][range_penalty] = changepoints
for i in range(len(traces)):
changepoints_by_penalty = changepoints_by_penalty_by_trace[i]
if penalty is not None:
results.append((penalty, changepoints_by_penalty[penalty]))
elif self.algo == "dynp" and num_changepoints is not None:
results.append((None, changepoints_by_penalty[None]))
else:
results.append(
(
self.find_penalty(changepoints_by_penalty),
changepoints_by_penalty,
)
)
if list_of_lists:
return results
else:
return results[0]
def find_penalty(self, changepoints_by_penalty):
changepoint_counts = list()
for i in range(self.range_min, self.range_max):
changepoint_counts.append(len(changepoints_by_penalty[i]))
start_index = -1
end_index = -1
longest_start = -1
longest_end = -1
prev_val = -1
for i, changepoint_count in enumerate(changepoint_counts):
if changepoint_count != prev_val:
end_index = i - 1
if end_index - start_index > longest_end - longest_start:
longest_start = start_index
longest_end = end_index
start_index = i
if i == len(changepoint_counts) - 1:
end_index = i
if end_index - start_index > longest_end - longest_start:
longest_start = start_index
longest_end = end_index
start_index = i
prev_val = changepoint_count
middle_of_plateau = longest_start + (longest_end - longest_start) // 2
return self.range_min + middle_of_plateau
def get_changepoints(self, traces, **kwargs):
results = self.get_penalty_and_changepoints(traces, **kwargs)
if type(results) is list:
return list(map(lambda res: res[1][res[0]]))
return results[1][results[0]]
def get_penalty(self, traces, **kwargs):
results = self.get_penalty_and_changepoints(traces, **kwargs)
return list(map(lambda res: res[0]))
def calc_raw_states(
self,
timestamps,
signals,
changepoints_by_signal,
num_changepoints,
opt_model=None,
):
"""
Calculate substates for signals (assumed to belong to a single parameter configuration).
:returns: (substate_counts, substate_data)
substates_counts = [number of substates in first changepoints_by_signal entry, number of substates in second entry, ...]
substate_data = [data for first sub-state, data for second sub-state, ...]
data = {"duration": [durations of corresponding sub-state in signals[i] where changepoints_by_signal[i] == num_changepoints]}
Note that len(substate_counts) >= len(substate_data). substate_counts gives the number of sub-states of each signal in signals
(substate_counts[i] == number of substates in signals[i]). substate_data only contains entries for signals which have
num_changepoints + 1 substates.
List of substates with duration and mean power: [(substate 1 duration, substate 1 power), ...]
"""
substate_data = list()
substate_counts = list()
usable_measurements = list()
expected_substate_count = num_changepoints + 1
for i, changepoints in enumerate(changepoints_by_signal):
substates = list()
start_index = 0
end_index = 0
for changepoint in changepoints:
# start_index of state is end_index of previous one
# (Transitions are instantaneous)
start_index = end_index
end_index = changepoint
substate = (start_index, end_index)
substates.append(substate)
substates.append((end_index, len(signals[i]) - 1))
substate_counts.append(len(substates))
if len(substates) == expected_substate_count:
usable_measurements.append((i, substates))
if len(usable_measurements) <= len(changepoints_by_signal) * 0.5:
logger.info(
f"Only {len(usable_measurements)} of {len(changepoints_by_signal)} measurements have {expected_substate_count} sub-states. Try lowering the jump step size"
)
else:
logger.debug(
f"{len(usable_measurements)} of {len(changepoints_by_signal)} measurements have {expected_substate_count} sub-states"
)
for i in range(expected_substate_count):
substate_data.append(
{
"duration": list(),
"power": list(),
"power_std": list(),
"signals_index": list(),
}
)
for num_measurement, substates in usable_measurements:
for i, substate in enumerate(substates):
power_trace = signals[num_measurement][substate[0] : substate[1]]
mean_power = np.mean(power_trace)
std_power = np.std(power_trace)
duration = (
timestamps[num_measurement][substate[1]]
- timestamps[num_measurement][substate[0]]
)
substate_data[i]["duration"].append(duration)
substate_data[i]["power"].append(mean_power)
substate_data[i]["power_std"].append(std_power)
substate_data[i]["signals_index"].append(num_measurement)
return substate_counts, substate_data
|