1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
|
# -----------------------------------------------------------------------------
# sly: yacc.py
#
# Copyright (C) 2016-2018
# David M. Beazley (Dabeaz LLC)
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# * Neither the name of the David Beazley or Dabeaz LLC may be used to
# endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# -----------------------------------------------------------------------------
import sys
import inspect
from collections import OrderedDict, defaultdict
__all__ = ["Parser"]
class YaccError(Exception):
"""
Exception raised for yacc-related build errors.
"""
pass
# -----------------------------------------------------------------------------
# === User configurable parameters ===
#
# Change these to modify the default behavior of yacc (if you wish).
# Move these parameters to the Yacc class itself.
# -----------------------------------------------------------------------------
ERROR_COUNT = 3 # Number of symbols that must be shifted to leave recovery mode
MAXINT = sys.maxsize
# This object is a stand-in for a logging object created by the
# logging module. SLY will use this by default to create things
# such as the parser.out file. If a user wants more detailed
# information, they can create their own logging object and pass
# it into SLY.
class SlyLogger(object):
def __init__(self, f):
self.f = f
def debug(self, msg, *args, **kwargs):
self.f.write((msg % args) + "\n")
info = debug
def warning(self, msg, *args, **kwargs):
self.f.write("WARNING: " + (msg % args) + "\n")
def error(self, msg, *args, **kwargs):
self.f.write("ERROR: " + (msg % args) + "\n")
critical = debug
# ----------------------------------------------------------------------
# This class is used to hold non-terminal grammar symbols during parsing.
# It normally has the following attributes set:
# .type = Grammar symbol type
# .value = Symbol value
# .lineno = Starting line number
# .index = Starting lex position
# ----------------------------------------------------------------------
class YaccSymbol:
def __str__(self):
return self.type
def __repr__(self):
return str(self)
# ----------------------------------------------------------------------
# This class is a wrapper around the objects actually passed to each
# grammar rule. Index lookup and assignment actually assign the
# .value attribute of the underlying YaccSymbol object.
# The lineno() method returns the line number of a given
# item (or 0 if not defined).
# ----------------------------------------------------------------------
class YaccProduction:
__slots__ = ("_slice", "_namemap", "_stack")
def __init__(self, s, stack=None):
self._slice = s
self._namemap = {}
self._stack = stack
def __getitem__(self, n):
if n >= 0:
return self._slice[n].value
else:
return self._stack[n].value
def __setitem__(self, n, v):
if n >= 0:
self._slice[n].value = v
else:
self._stack[n].value = v
def __len__(self):
return len(self._slice)
@property
def lineno(self):
for tok in self._slice:
if isinstance(tok, YaccSymbol):
continue
lineno = getattr(tok, "lineno", None)
if lineno:
return lineno
raise AttributeError("No line number found")
@property
def index(self):
for tok in self._slice:
if isinstance(tok, YaccSymbol):
continue
index = getattr(tok, "index", None)
if index is not None:
return index
raise AttributeError("No index attribute found")
def __getattr__(self, name):
if name in self._namemap:
return self._slice[self._namemap[name]].value
else:
nameset = "{" + ", ".join(self._namemap) + "}"
raise AttributeError(f"No symbol {name}. Must be one of {nameset}.")
def __setattr__(self, name, value):
if name[:1] == "_":
super().__setattr__(name, value)
else:
raise AttributeError(f"Can't reassign the value of attribute {name!r}")
# -----------------------------------------------------------------------------
# === Grammar Representation ===
#
# The following functions, classes, and variables are used to represent and
# manipulate the rules that make up a grammar.
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# class Production:
#
# This class stores the raw information about a single production or grammar rule.
# A grammar rule refers to a specification such as this:
#
# expr : expr PLUS term
#
# Here are the basic attributes defined on all productions
#
# name - Name of the production. For example 'expr'
# prod - A list of symbols on the right side ['expr','PLUS','term']
# prec - Production precedence level
# number - Production number.
# func - Function that executes on reduce
# file - File where production function is defined
# lineno - Line number where production function is defined
#
# The following attributes are defined or optional.
#
# len - Length of the production (number of symbols on right hand side)
# usyms - Set of unique symbols found in the production
# -----------------------------------------------------------------------------
class Production(object):
reduced = 0
def __init__(
self, number, name, prod, precedence=("right", 0), func=None, file="", line=0
):
self.name = name
self.prod = tuple(prod)
self.number = number
self.func = func
self.file = file
self.line = line
self.prec = precedence
# Internal settings used during table construction
self.len = len(self.prod) # Length of the production
# Create a list of unique production symbols used in the production
self.usyms = []
symmap = defaultdict(list)
for n, s in enumerate(self.prod):
symmap[s].append(n)
if s not in self.usyms:
self.usyms.append(s)
# Create a dict mapping symbol names to indices
m = {}
for key, indices in symmap.items():
if len(indices) == 1:
m[key] = indices[0]
else:
for n, index in enumerate(indices):
m[key + str(n)] = index
self.namemap = m
# List of all LR items for the production
self.lr_items = []
self.lr_next = None
def __str__(self):
if self.prod:
s = "%s -> %s" % (self.name, " ".join(self.prod))
else:
s = f"{self.name} -> <empty>"
if self.prec[1]:
s += " [precedence=%s, level=%d]" % self.prec
return s
def __repr__(self):
return f"Production({self})"
def __len__(self):
return len(self.prod)
def __nonzero__(self):
raise RuntimeError("Used")
return 1
def __getitem__(self, index):
return self.prod[index]
# Return the nth lr_item from the production (or None if at the end)
def lr_item(self, n):
if n > len(self.prod):
return None
p = LRItem(self, n)
# Precompute the list of productions immediately following.
try:
p.lr_after = Prodnames[p.prod[n + 1]]
except (IndexError, KeyError):
p.lr_after = []
try:
p.lr_before = p.prod[n - 1]
except IndexError:
p.lr_before = None
return p
# -----------------------------------------------------------------------------
# class LRItem
#
# This class represents a specific stage of parsing a production rule. For
# example:
#
# expr : expr . PLUS term
#
# In the above, the "." represents the current location of the parse. Here
# basic attributes:
#
# name - Name of the production. For example 'expr'
# prod - A list of symbols on the right side ['expr','.', 'PLUS','term']
# number - Production number.
#
# lr_next Next LR item. Example, if we are ' expr -> expr . PLUS term'
# then lr_next refers to 'expr -> expr PLUS . term'
# lr_index - LR item index (location of the ".") in the prod list.
# lookaheads - LALR lookahead symbols for this item
# len - Length of the production (number of symbols on right hand side)
# lr_after - List of all productions that immediately follow
# lr_before - Grammar symbol immediately before
# -----------------------------------------------------------------------------
class LRItem(object):
def __init__(self, p, n):
self.name = p.name
self.prod = list(p.prod)
self.number = p.number
self.lr_index = n
self.lookaheads = {}
self.prod.insert(n, ".")
self.prod = tuple(self.prod)
self.len = len(self.prod)
self.usyms = p.usyms
def __str__(self):
if self.prod:
s = "%s -> %s" % (self.name, " ".join(self.prod))
else:
s = f"{self.name} -> <empty>"
return s
def __repr__(self):
return f"LRItem({self})"
# -----------------------------------------------------------------------------
# rightmost_terminal()
#
# Return the rightmost terminal from a list of symbols. Used in add_production()
# -----------------------------------------------------------------------------
def rightmost_terminal(symbols, terminals):
i = len(symbols) - 1
while i >= 0:
if symbols[i] in terminals:
return symbols[i]
i -= 1
return None
# -----------------------------------------------------------------------------
# === GRAMMAR CLASS ===
#
# The following class represents the contents of the specified grammar along
# with various computed properties such as first sets, follow sets, LR items, etc.
# This data is used for critical parts of the table generation process later.
# -----------------------------------------------------------------------------
class GrammarError(YaccError):
pass
class Grammar(object):
def __init__(self, terminals):
self.Productions = [None] # A list of all of the productions. The first
# entry is always reserved for the purpose of
# building an augmented grammar
self.Prodnames = (
{}
) # A dictionary mapping the names of nonterminals to a list of all
# productions of that nonterminal.
self.Prodmap = {} # A dictionary that is only used to detect duplicate
# productions.
self.Terminals = {} # A dictionary mapping the names of terminal symbols to a
# list of the rules where they are used.
for term in terminals:
self.Terminals[term] = []
self.Terminals["error"] = []
self.Nonterminals = {} # A dictionary mapping names of nonterminals to a list
# of rule numbers where they are used.
self.First = {} # A dictionary of precomputed FIRST(x) symbols
self.Follow = {} # A dictionary of precomputed FOLLOW(x) symbols
self.Precedence = (
{}
) # Precedence rules for each terminal. Contains tuples of the
# form ('right',level) or ('nonassoc', level) or ('left',level)
self.UsedPrecedence = (
set()
) # Precedence rules that were actually used by the grammer.
# This is only used to provide error checking and to generate
# a warning about unused precedence rules.
self.Start = None # Starting symbol for the grammar
def __len__(self):
return len(self.Productions)
def __getitem__(self, index):
return self.Productions[index]
# -----------------------------------------------------------------------------
# set_precedence()
#
# Sets the precedence for a given terminal. assoc is the associativity such as
# 'left','right', or 'nonassoc'. level is a numeric level.
#
# -----------------------------------------------------------------------------
def set_precedence(self, term, assoc, level):
assert self.Productions == [
None
], "Must call set_precedence() before add_production()"
if term in self.Precedence:
raise GrammarError(f"Precedence already specified for terminal {term!r}")
if assoc not in ["left", "right", "nonassoc"]:
raise GrammarError(
f"Associativity of {term!r} must be one of 'left','right', or 'nonassoc'"
)
self.Precedence[term] = (assoc, level)
# -----------------------------------------------------------------------------
# add_production()
#
# Given an action function, this function assembles a production rule and
# computes its precedence level.
#
# The production rule is supplied as a list of symbols. For example,
# a rule such as 'expr : expr PLUS term' has a production name of 'expr' and
# symbols ['expr','PLUS','term'].
#
# Precedence is determined by the precedence of the right-most non-terminal
# or the precedence of a terminal specified by %prec.
#
# A variety of error checks are performed to make sure production symbols
# are valid and that %prec is used correctly.
# -----------------------------------------------------------------------------
def add_production(self, prodname, syms, func=None, file="", line=0):
if prodname in self.Terminals:
raise GrammarError(
f"{file}:{line}: Illegal rule name {prodname!r}. Already defined as a token"
)
if prodname == "error":
raise GrammarError(
f"{file}:{line}: Illegal rule name {prodname!r}. error is a reserved word"
)
# Look for literal tokens
for n, s in enumerate(syms):
if s[0] in "'\"" and s[0] == s[-1]:
c = s[1:-1]
if len(c) != 1:
raise GrammarError(
f"{file}:{line}: Literal token {s} in rule {prodname!r} may only be a single character"
)
if c not in self.Terminals:
self.Terminals[c] = []
syms[n] = c
continue
# Determine the precedence level
if "%prec" in syms:
if syms[-1] == "%prec":
raise GrammarError(
f"{file}:{line}: Syntax error. Nothing follows %%prec"
)
if syms[-2] != "%prec":
raise GrammarError(
f"{file}:{line}: Syntax error. %prec can only appear at the end of a grammar rule"
)
precname = syms[-1]
prodprec = self.Precedence.get(precname)
if not prodprec:
raise GrammarError(
f"{file}:{line}: Nothing known about the precedence of {precname!r}"
)
else:
self.UsedPrecedence.add(precname)
del syms[-2:] # Drop %prec from the rule
else:
# If no %prec, precedence is determined by the rightmost terminal symbol
precname = rightmost_terminal(syms, self.Terminals)
prodprec = self.Precedence.get(precname, ("right", 0))
# See if the rule is already in the rulemap
map = "%s -> %s" % (prodname, syms)
if map in self.Prodmap:
m = self.Prodmap[map]
raise GrammarError(
f"{file}:{line}: Duplicate rule {m}. "
+ f"Previous definition at {m.file}:{m.line}"
)
# From this point on, everything is valid. Create a new Production instance
pnumber = len(self.Productions)
if prodname not in self.Nonterminals:
self.Nonterminals[prodname] = []
# Add the production number to Terminals and Nonterminals
for t in syms:
if t in self.Terminals:
self.Terminals[t].append(pnumber)
else:
if t not in self.Nonterminals:
self.Nonterminals[t] = []
self.Nonterminals[t].append(pnumber)
# Create a production and add it to the list of productions
p = Production(pnumber, prodname, syms, prodprec, func, file, line)
self.Productions.append(p)
self.Prodmap[map] = p
# Add to the global productions list
try:
self.Prodnames[prodname].append(p)
except KeyError:
self.Prodnames[prodname] = [p]
# -----------------------------------------------------------------------------
# set_start()
#
# Sets the starting symbol and creates the augmented grammar. Production
# rule 0 is S' -> start where start is the start symbol.
# -----------------------------------------------------------------------------
def set_start(self, start=None):
if callable(start):
start = start.__name__
if not start:
start = self.Productions[1].name
if start not in self.Nonterminals:
raise GrammarError(f"start symbol {start} undefined")
self.Productions[0] = Production(0, "S'", [start])
self.Nonterminals[start].append(0)
self.Start = start
# -----------------------------------------------------------------------------
# find_unreachable()
#
# Find all of the nonterminal symbols that can't be reached from the starting
# symbol. Returns a list of nonterminals that can't be reached.
# -----------------------------------------------------------------------------
def find_unreachable(self):
# Mark all symbols that are reachable from a symbol s
def mark_reachable_from(s):
if s in reachable:
return
reachable.add(s)
for p in self.Prodnames.get(s, []):
for r in p.prod:
mark_reachable_from(r)
reachable = set()
mark_reachable_from(self.Productions[0].prod[0])
return [s for s in self.Nonterminals if s not in reachable]
# -----------------------------------------------------------------------------
# infinite_cycles()
#
# This function looks at the various parsing rules and tries to detect
# infinite recursion cycles (grammar rules where there is no possible way
# to derive a string of only terminals).
# -----------------------------------------------------------------------------
def infinite_cycles(self):
terminates = {}
# Terminals:
for t in self.Terminals:
terminates[t] = True
terminates["$end"] = True
# Nonterminals:
# Initialize to false:
for n in self.Nonterminals:
terminates[n] = False
# Then propagate termination until no change:
while True:
some_change = False
for (n, pl) in self.Prodnames.items():
# Nonterminal n terminates iff any of its productions terminates.
for p in pl:
# Production p terminates iff all of its rhs symbols terminate.
for s in p.prod:
if not terminates[s]:
# The symbol s does not terminate,
# so production p does not terminate.
p_terminates = False
break
else:
# didn't break from the loop,
# so every symbol s terminates
# so production p terminates.
p_terminates = True
if p_terminates:
# symbol n terminates!
if not terminates[n]:
terminates[n] = True
some_change = True
# Don't need to consider any more productions for this n.
break
if not some_change:
break
infinite = []
for (s, term) in terminates.items():
if not term:
if s not in self.Prodnames and s not in self.Terminals and s != "error":
# s is used-but-not-defined, and we've already warned of that,
# so it would be overkill to say that it's also non-terminating.
pass
else:
infinite.append(s)
return infinite
# -----------------------------------------------------------------------------
# undefined_symbols()
#
# Find all symbols that were used the grammar, but not defined as tokens or
# grammar rules. Returns a list of tuples (sym, prod) where sym in the symbol
# and prod is the production where the symbol was used.
# -----------------------------------------------------------------------------
def undefined_symbols(self):
result = []
for p in self.Productions:
if not p:
continue
for s in p.prod:
if s not in self.Prodnames and s not in self.Terminals and s != "error":
result.append((s, p))
return result
# -----------------------------------------------------------------------------
# unused_terminals()
#
# Find all terminals that were defined, but not used by the grammar. Returns
# a list of all symbols.
# -----------------------------------------------------------------------------
def unused_terminals(self):
unused_tok = []
for s, v in self.Terminals.items():
if s != "error" and not v:
unused_tok.append(s)
return unused_tok
# ------------------------------------------------------------------------------
# unused_rules()
#
# Find all grammar rules that were defined, but not used (maybe not reachable)
# Returns a list of productions.
# ------------------------------------------------------------------------------
def unused_rules(self):
unused_prod = []
for s, v in self.Nonterminals.items():
if not v:
p = self.Prodnames[s][0]
unused_prod.append(p)
return unused_prod
# -----------------------------------------------------------------------------
# unused_precedence()
#
# Returns a list of tuples (term,precedence) corresponding to precedence
# rules that were never used by the grammar. term is the name of the terminal
# on which precedence was applied and precedence is a string such as 'left' or
# 'right' corresponding to the type of precedence.
# -----------------------------------------------------------------------------
def unused_precedence(self):
unused = []
for termname in self.Precedence:
if not (termname in self.Terminals or termname in self.UsedPrecedence):
unused.append((termname, self.Precedence[termname][0]))
return unused
# -------------------------------------------------------------------------
# _first()
#
# Compute the value of FIRST1(beta) where beta is a tuple of symbols.
#
# During execution of compute_first1, the result may be incomplete.
# Afterward (e.g., when called from compute_follow()), it will be complete.
# -------------------------------------------------------------------------
def _first(self, beta):
# We are computing First(x1,x2,x3,...,xn)
result = []
for x in beta:
x_produces_empty = False
# Add all the non-<empty> symbols of First[x] to the result.
for f in self.First[x]:
if f == "<empty>":
x_produces_empty = True
else:
if f not in result:
result.append(f)
if x_produces_empty:
# We have to consider the next x in beta,
# i.e. stay in the loop.
pass
else:
# We don't have to consider any further symbols in beta.
break
else:
# There was no 'break' from the loop,
# so x_produces_empty was true for all x in beta,
# so beta produces empty as well.
result.append("<empty>")
return result
# -------------------------------------------------------------------------
# compute_first()
#
# Compute the value of FIRST1(X) for all symbols
# -------------------------------------------------------------------------
def compute_first(self):
if self.First:
return self.First
# Terminals:
for t in self.Terminals:
self.First[t] = [t]
self.First["$end"] = ["$end"]
# Nonterminals:
# Initialize to the empty set:
for n in self.Nonterminals:
self.First[n] = []
# Then propagate symbols until no change:
while True:
some_change = False
for n in self.Nonterminals:
for p in self.Prodnames[n]:
for f in self._first(p.prod):
if f not in self.First[n]:
self.First[n].append(f)
some_change = True
if not some_change:
break
return self.First
# ---------------------------------------------------------------------
# compute_follow()
#
# Computes all of the follow sets for every non-terminal symbol. The
# follow set is the set of all symbols that might follow a given
# non-terminal. See the Dragon book, 2nd Ed. p. 189.
# ---------------------------------------------------------------------
def compute_follow(self, start=None):
# If already computed, return the result
if self.Follow:
return self.Follow
# If first sets not computed yet, do that first.
if not self.First:
self.compute_first()
# Add '$end' to the follow list of the start symbol
for k in self.Nonterminals:
self.Follow[k] = []
if not start:
start = self.Productions[1].name
self.Follow[start] = ["$end"]
while True:
didadd = False
for p in self.Productions[1:]:
# Here is the production set
for i, B in enumerate(p.prod):
if B in self.Nonterminals:
# Okay. We got a non-terminal in a production
fst = self._first(p.prod[i + 1 :])
hasempty = False
for f in fst:
if f != "<empty>" and f not in self.Follow[B]:
self.Follow[B].append(f)
didadd = True
if f == "<empty>":
hasempty = True
if hasempty or i == (len(p.prod) - 1):
# Add elements of follow(a) to follow(b)
for f in self.Follow[p.name]:
if f not in self.Follow[B]:
self.Follow[B].append(f)
didadd = True
if not didadd:
break
return self.Follow
# -----------------------------------------------------------------------------
# build_lritems()
#
# This function walks the list of productions and builds a complete set of the
# LR items. The LR items are stored in two ways: First, they are uniquely
# numbered and placed in the list _lritems. Second, a linked list of LR items
# is built for each production. For example:
#
# E -> E PLUS E
#
# Creates the list
#
# [E -> . E PLUS E, E -> E . PLUS E, E -> E PLUS . E, E -> E PLUS E . ]
# -----------------------------------------------------------------------------
def build_lritems(self):
for p in self.Productions:
lastlri = p
i = 0
lr_items = []
while True:
if i > len(p):
lri = None
else:
lri = LRItem(p, i)
# Precompute the list of productions immediately following
try:
lri.lr_after = self.Prodnames[lri.prod[i + 1]]
except (IndexError, KeyError):
lri.lr_after = []
try:
lri.lr_before = lri.prod[i - 1]
except IndexError:
lri.lr_before = None
lastlri.lr_next = lri
if not lri:
break
lr_items.append(lri)
lastlri = lri
i += 1
p.lr_items = lr_items
# ----------------------------------------------------------------------
# Debugging output. Printing the grammar will produce a detailed
# description along with some diagnostics.
# ----------------------------------------------------------------------
def __str__(self):
out = []
out.append("Grammar:\n")
for n, p in enumerate(self.Productions):
out.append(f"Rule {n:<5d} {p}")
unused_terminals = self.unused_terminals()
if unused_terminals:
out.append("\nUnused terminals:\n")
for term in unused_terminals:
out.append(f" {term}")
out.append("\nTerminals, with rules where they appear:\n")
for term in sorted(self.Terminals):
out.append(
"%-20s : %s" % (term, " ".join(str(s) for s in self.Terminals[term]))
)
out.append("\nNonterminals, with rules where they appear:\n")
for nonterm in sorted(self.Nonterminals):
out.append(
"%-20s : %s"
% (nonterm, " ".join(str(s) for s in self.Nonterminals[nonterm]))
)
out.append("")
return "\n".join(out)
# -----------------------------------------------------------------------------
# === LR Generator ===
#
# The following classes and functions are used to generate LR parsing tables on
# a grammar.
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# digraph()
# traverse()
#
# The following two functions are used to compute set valued functions
# of the form:
#
# F(x) = F'(x) U U{F(y) | x R y}
#
# This is used to compute the values of Read() sets as well as FOLLOW sets
# in LALR(1) generation.
#
# Inputs: X - An input set
# R - A relation
# FP - Set-valued function
# ------------------------------------------------------------------------------
def digraph(X, R, FP):
N = {}
for x in X:
N[x] = 0
stack = []
F = {}
for x in X:
if N[x] == 0:
traverse(x, N, stack, F, X, R, FP)
return F
def traverse(x, N, stack, F, X, R, FP):
stack.append(x)
d = len(stack)
N[x] = d
F[x] = FP(x) # F(X) <- F'(x)
rel = R(x) # Get y's related to x
for y in rel:
if N[y] == 0:
traverse(y, N, stack, F, X, R, FP)
N[x] = min(N[x], N[y])
for a in F.get(y, []):
if a not in F[x]:
F[x].append(a)
if N[x] == d:
N[stack[-1]] = MAXINT
F[stack[-1]] = F[x]
element = stack.pop()
while element != x:
N[stack[-1]] = MAXINT
F[stack[-1]] = F[x]
element = stack.pop()
class LALRError(YaccError):
pass
# -----------------------------------------------------------------------------
# == LRGeneratedTable ==
#
# This class implements the LR table generation algorithm. There are no
# public methods except for write()
# -----------------------------------------------------------------------------
class LRTable(object):
def __init__(self, grammar):
self.grammar = grammar
# Internal attributes
self.lr_action = {} # Action table
self.lr_goto = {} # Goto table
self.lr_productions = grammar.Productions # Copy of grammar Production array
self.lr_goto_cache = {} # Cache of computed gotos
self.lr0_cidhash = {} # Cache of closures
self._add_count = 0 # Internal counter used to detect cycles
# Diagonistic information filled in by the table generator
self.state_descriptions = OrderedDict()
self.sr_conflict = 0
self.rr_conflict = 0
self.conflicts = [] # List of conflicts
self.sr_conflicts = []
self.rr_conflicts = []
# Build the tables
self.grammar.build_lritems()
self.grammar.compute_first()
self.grammar.compute_follow()
self.lr_parse_table()
# Build default states
# This identifies parser states where there is only one possible reduction action.
# For such states, the parser can make a choose to make a rule reduction without consuming
# the next look-ahead token. This delayed invocation of the tokenizer can be useful in
# certain kinds of advanced parsing situations where the lexer and parser interact with
# each other or change states (i.e., manipulation of scope, lexer states, etc.).
#
# See: http://www.gnu.org/software/bison/manual/html_node/Default-Reductions.html#Default-Reductions
self.defaulted_states = {}
for state, actions in self.lr_action.items():
rules = list(actions.values())
if len(rules) == 1 and rules[0] < 0:
self.defaulted_states[state] = rules[0]
# Compute the LR(0) closure operation on I, where I is a set of LR(0) items.
def lr0_closure(self, I):
self._add_count += 1
# Add everything in I to J
J = I[:]
didadd = True
while didadd:
didadd = False
for j in J:
for x in j.lr_after:
if getattr(x, "lr0_added", 0) == self._add_count:
continue
# Add B --> .G to J
J.append(x.lr_next)
x.lr0_added = self._add_count
didadd = True
return J
# Compute the LR(0) goto function goto(I,X) where I is a set
# of LR(0) items and X is a grammar symbol. This function is written
# in a way that guarantees uniqueness of the generated goto sets
# (i.e. the same goto set will never be returned as two different Python
# objects). With uniqueness, we can later do fast set comparisons using
# id(obj) instead of element-wise comparison.
def lr0_goto(self, I, x):
# First we look for a previously cached entry
g = self.lr_goto_cache.get((id(I), x))
if g:
return g
# Now we generate the goto set in a way that guarantees uniqueness
# of the result
s = self.lr_goto_cache.get(x)
if not s:
s = {}
self.lr_goto_cache[x] = s
gs = []
for p in I:
n = p.lr_next
if n and n.lr_before == x:
s1 = s.get(id(n))
if not s1:
s1 = {}
s[id(n)] = s1
gs.append(n)
s = s1
g = s.get("$end")
if not g:
if gs:
g = self.lr0_closure(gs)
s["$end"] = g
else:
s["$end"] = gs
self.lr_goto_cache[(id(I), x)] = g
return g
# Compute the LR(0) sets of item function
def lr0_items(self):
C = [self.lr0_closure([self.grammar.Productions[0].lr_next])]
i = 0
for I in C:
self.lr0_cidhash[id(I)] = i
i += 1
# Loop over the items in C and each grammar symbols
i = 0
while i < len(C):
I = C[i]
i += 1
# Collect all of the symbols that could possibly be in the goto(I,X) sets
asyms = {}
for ii in I:
for s in ii.usyms:
asyms[s] = None
for x in asyms:
g = self.lr0_goto(I, x)
if not g or id(g) in self.lr0_cidhash:
continue
self.lr0_cidhash[id(g)] = len(C)
C.append(g)
return C
# -----------------------------------------------------------------------------
# ==== LALR(1) Parsing ====
#
# LALR(1) parsing is almost exactly the same as SLR except that instead of
# relying upon Follow() sets when performing reductions, a more selective
# lookahead set that incorporates the state of the LR(0) machine is utilized.
# Thus, we mainly just have to focus on calculating the lookahead sets.
#
# The method used here is due to DeRemer and Pennelo (1982).
#
# DeRemer, F. L., and T. J. Pennelo: "Efficient Computation of LALR(1)
# Lookahead Sets", ACM Transactions on Programming Languages and Systems,
# Vol. 4, No. 4, Oct. 1982, pp. 615-649
#
# Further details can also be found in:
#
# J. Tremblay and P. Sorenson, "The Theory and Practice of Compiler Writing",
# McGraw-Hill Book Company, (1985).
#
# -----------------------------------------------------------------------------
# -----------------------------------------------------------------------------
# compute_nullable_nonterminals()
#
# Creates a dictionary containing all of the non-terminals that might produce
# an empty production.
# -----------------------------------------------------------------------------
def compute_nullable_nonterminals(self):
nullable = set()
num_nullable = 0
while True:
for p in self.grammar.Productions[1:]:
if p.len == 0:
nullable.add(p.name)
continue
for t in p.prod:
if t not in nullable:
break
else:
nullable.add(p.name)
if len(nullable) == num_nullable:
break
num_nullable = len(nullable)
return nullable
# -----------------------------------------------------------------------------
# find_nonterminal_trans(C)
#
# Given a set of LR(0) items, this functions finds all of the non-terminal
# transitions. These are transitions in which a dot appears immediately before
# a non-terminal. Returns a list of tuples of the form (state,N) where state
# is the state number and N is the nonterminal symbol.
#
# The input C is the set of LR(0) items.
# -----------------------------------------------------------------------------
def find_nonterminal_transitions(self, C):
trans = []
for stateno, state in enumerate(C):
for p in state:
if p.lr_index < p.len - 1:
t = (stateno, p.prod[p.lr_index + 1])
if t[1] in self.grammar.Nonterminals:
if t not in trans:
trans.append(t)
return trans
# -----------------------------------------------------------------------------
# dr_relation()
#
# Computes the DR(p,A) relationships for non-terminal transitions. The input
# is a tuple (state,N) where state is a number and N is a nonterminal symbol.
#
# Returns a list of terminals.
# -----------------------------------------------------------------------------
def dr_relation(self, C, trans, nullable):
dr_set = {}
state, N = trans
terms = []
g = self.lr0_goto(C[state], N)
for p in g:
if p.lr_index < p.len - 1:
a = p.prod[p.lr_index + 1]
if a in self.grammar.Terminals:
if a not in terms:
terms.append(a)
# This extra bit is to handle the start state
if state == 0 and N == self.grammar.Productions[0].prod[0]:
terms.append("$end")
return terms
# -----------------------------------------------------------------------------
# reads_relation()
#
# Computes the READS() relation (p,A) READS (t,C).
# -----------------------------------------------------------------------------
def reads_relation(self, C, trans, empty):
# Look for empty transitions
rel = []
state, N = trans
g = self.lr0_goto(C[state], N)
j = self.lr0_cidhash.get(id(g), -1)
for p in g:
if p.lr_index < p.len - 1:
a = p.prod[p.lr_index + 1]
if a in empty:
rel.append((j, a))
return rel
# -----------------------------------------------------------------------------
# compute_lookback_includes()
#
# Determines the lookback and includes relations
#
# LOOKBACK:
#
# This relation is determined by running the LR(0) state machine forward.
# For example, starting with a production "N : . A B C", we run it forward
# to obtain "N : A B C ." We then build a relationship between this final
# state and the starting state. These relationships are stored in a dictionary
# lookdict.
#
# INCLUDES:
#
# Computes the INCLUDE() relation (p,A) INCLUDES (p',B).
#
# This relation is used to determine non-terminal transitions that occur
# inside of other non-terminal transition states. (p,A) INCLUDES (p', B)
# if the following holds:
#
# B -> LAT, where T -> epsilon and p' -L-> p
#
# L is essentially a prefix (which may be empty), T is a suffix that must be
# able to derive an empty string. State p' must lead to state p with the string L.
#
# -----------------------------------------------------------------------------
def compute_lookback_includes(self, C, trans, nullable):
lookdict = {} # Dictionary of lookback relations
includedict = {} # Dictionary of include relations
# Make a dictionary of non-terminal transitions
dtrans = {}
for t in trans:
dtrans[t] = 1
# Loop over all transitions and compute lookbacks and includes
for state, N in trans:
lookb = []
includes = []
for p in C[state]:
if p.name != N:
continue
# Okay, we have a name match. We now follow the production all the way
# through the state machine until we get the . on the right hand side
lr_index = p.lr_index
j = state
while lr_index < p.len - 1:
lr_index = lr_index + 1
t = p.prod[lr_index]
# Check to see if this symbol and state are a non-terminal transition
if (j, t) in dtrans:
# Yes. Okay, there is some chance that this is an includes relation
# the only way to know for certain is whether the rest of the
# production derives empty
li = lr_index + 1
while li < p.len:
if p.prod[li] in self.grammar.Terminals:
break # No forget it
if p.prod[li] not in nullable:
break
li = li + 1
else:
# Appears to be a relation between (j,t) and (state,N)
includes.append((j, t))
g = self.lr0_goto(C[j], t) # Go to next set
j = self.lr0_cidhash.get(id(g), -1) # Go to next state
# When we get here, j is the final state, now we have to locate the production
for r in C[j]:
if r.name != p.name:
continue
if r.len != p.len:
continue
i = 0
# This look is comparing a production ". A B C" with "A B C ."
while i < r.lr_index:
if r.prod[i] != p.prod[i + 1]:
break
i = i + 1
else:
lookb.append((j, r))
for i in includes:
if i not in includedict:
includedict[i] = []
includedict[i].append((state, N))
lookdict[(state, N)] = lookb
return lookdict, includedict
# -----------------------------------------------------------------------------
# compute_read_sets()
#
# Given a set of LR(0) items, this function computes the read sets.
#
# Inputs: C = Set of LR(0) items
# ntrans = Set of nonterminal transitions
# nullable = Set of empty transitions
#
# Returns a set containing the read sets
# -----------------------------------------------------------------------------
def compute_read_sets(self, C, ntrans, nullable):
FP = lambda x: self.dr_relation(C, x, nullable)
R = lambda x: self.reads_relation(C, x, nullable)
F = digraph(ntrans, R, FP)
return F
# -----------------------------------------------------------------------------
# compute_follow_sets()
#
# Given a set of LR(0) items, a set of non-terminal transitions, a readset,
# and an include set, this function computes the follow sets
#
# Follow(p,A) = Read(p,A) U U {Follow(p',B) | (p,A) INCLUDES (p',B)}
#
# Inputs:
# ntrans = Set of nonterminal transitions
# readsets = Readset (previously computed)
# inclsets = Include sets (previously computed)
#
# Returns a set containing the follow sets
# -----------------------------------------------------------------------------
def compute_follow_sets(self, ntrans, readsets, inclsets):
FP = lambda x: readsets[x]
R = lambda x: inclsets.get(x, [])
F = digraph(ntrans, R, FP)
return F
# -----------------------------------------------------------------------------
# add_lookaheads()
#
# Attaches the lookahead symbols to grammar rules.
#
# Inputs: lookbacks - Set of lookback relations
# followset - Computed follow set
#
# This function directly attaches the lookaheads to productions contained
# in the lookbacks set
# -----------------------------------------------------------------------------
def add_lookaheads(self, lookbacks, followset):
for trans, lb in lookbacks.items():
# Loop over productions in lookback
for state, p in lb:
if state not in p.lookaheads:
p.lookaheads[state] = []
f = followset.get(trans, [])
for a in f:
if a not in p.lookaheads[state]:
p.lookaheads[state].append(a)
# -----------------------------------------------------------------------------
# add_lalr_lookaheads()
#
# This function does all of the work of adding lookahead information for use
# with LALR parsing
# -----------------------------------------------------------------------------
def add_lalr_lookaheads(self, C):
# Determine all of the nullable nonterminals
nullable = self.compute_nullable_nonterminals()
# Find all non-terminal transitions
trans = self.find_nonterminal_transitions(C)
# Compute read sets
readsets = self.compute_read_sets(C, trans, nullable)
# Compute lookback/includes relations
lookd, included = self.compute_lookback_includes(C, trans, nullable)
# Compute LALR FOLLOW sets
followsets = self.compute_follow_sets(trans, readsets, included)
# Add all of the lookaheads
self.add_lookaheads(lookd, followsets)
# -----------------------------------------------------------------------------
# lr_parse_table()
#
# This function constructs the final LALR parse table. Touch this code and die.
# -----------------------------------------------------------------------------
def lr_parse_table(self):
Productions = self.grammar.Productions
Precedence = self.grammar.Precedence
goto = self.lr_goto # Goto array
action = self.lr_action # Action array
actionp = {} # Action production array (temporary)
# Step 1: Construct C = { I0, I1, ... IN}, collection of LR(0) items
# This determines the number of states
C = self.lr0_items()
self.add_lalr_lookaheads(C)
# Build the parser table, state by state
for st, I in enumerate(C):
descrip = []
# Loop over each production in I
actlist = [] # List of actions
st_action = {}
st_actionp = {}
st_goto = {}
descrip.append(f"\nstate {st}\n")
for p in I:
descrip.append(f" ({p.number}) {p}")
for p in I:
if p.len == p.lr_index + 1:
if p.name == "S'":
# Start symbol. Accept!
st_action["$end"] = 0
st_actionp["$end"] = p
else:
# We are at the end of a production. Reduce!
laheads = p.lookaheads[st]
for a in laheads:
actlist.append(
(a, p, f"reduce using rule {p.number} ({p})")
)
r = st_action.get(a)
if r is not None:
# Have a shift/reduce or reduce/reduce conflict
if r > 0:
# Need to decide on shift or reduce here
# By default we favor shifting. Need to add
# some precedence rules here.
# Shift precedence comes from the token
sprec, slevel = Precedence.get(a, ("right", 0))
# Reduce precedence comes from rule being reduced (p)
rprec, rlevel = Productions[p.number].prec
if (slevel < rlevel) or (
(slevel == rlevel) and (rprec == "left")
):
# We really need to reduce here.
st_action[a] = -p.number
st_actionp[a] = p
if not slevel and not rlevel:
descrip.append(
f" ! shift/reduce conflict for {a} resolved as reduce"
)
self.sr_conflicts.append((st, a, "reduce"))
Productions[p.number].reduced += 1
elif (slevel == rlevel) and (rprec == "nonassoc"):
st_action[a] = None
else:
# Hmmm. Guess we'll keep the shift
if not rlevel:
descrip.append(
f" ! shift/reduce conflict for {a} resolved as shift"
)
self.sr_conflicts.append((st, a, "shift"))
elif r <= 0:
# Reduce/reduce conflict. In this case, we favor the rule
# that was defined first in the grammar file
oldp = Productions[-r]
pp = Productions[p.number]
if oldp.line > pp.line:
st_action[a] = -p.number
st_actionp[a] = p
chosenp, rejectp = pp, oldp
Productions[p.number].reduced += 1
Productions[oldp.number].reduced -= 1
else:
chosenp, rejectp = oldp, pp
self.rr_conflicts.append((st, chosenp, rejectp))
descrip.append(
" ! reduce/reduce conflict for %s resolved using rule %d (%s)"
% (a, st_actionp[a].number, st_actionp[a])
)
else:
raise LALRError(f"Unknown conflict in state {st}")
else:
st_action[a] = -p.number
st_actionp[a] = p
Productions[p.number].reduced += 1
else:
i = p.lr_index
a = p.prod[i + 1] # Get symbol right after the "."
if a in self.grammar.Terminals:
g = self.lr0_goto(I, a)
j = self.lr0_cidhash.get(id(g), -1)
if j >= 0:
# We are in a shift state
actlist.append((a, p, f"shift and go to state {j}"))
r = st_action.get(a)
if r is not None:
# Whoa have a shift/reduce or shift/shift conflict
if r > 0:
if r != j:
raise LALRError(
f"Shift/shift conflict in state {st}"
)
elif r <= 0:
# Do a precedence check.
# - if precedence of reduce rule is higher, we reduce.
# - if precedence of reduce is same and left assoc, we reduce.
# - otherwise we shift
rprec, rlevel = Productions[
st_actionp[a].number
].prec
sprec, slevel = Precedence.get(a, ("right", 0))
if (slevel > rlevel) or (
(slevel == rlevel) and (rprec == "right")
):
# We decide to shift here... highest precedence to shift
Productions[st_actionp[a].number].reduced -= 1
st_action[a] = j
st_actionp[a] = p
if not rlevel:
descrip.append(
f" ! shift/reduce conflict for {a} resolved as shift"
)
self.sr_conflicts.append((st, a, "shift"))
elif (slevel == rlevel) and (rprec == "nonassoc"):
st_action[a] = None
else:
# Hmmm. Guess we'll keep the reduce
if not slevel and not rlevel:
descrip.append(
f" ! shift/reduce conflict for {a} resolved as reduce"
)
self.sr_conflicts.append((st, a, "reduce"))
else:
raise LALRError(f"Unknown conflict in state {st}")
else:
st_action[a] = j
st_actionp[a] = p
# Print the actions associated with each terminal
_actprint = {}
for a, p, m in actlist:
if a in st_action:
if p is st_actionp[a]:
descrip.append(f" {a:<15s} {m}")
_actprint[(a, m)] = 1
descrip.append("")
# Construct the goto table for this state
nkeys = {}
for ii in I:
for s in ii.usyms:
if s in self.grammar.Nonterminals:
nkeys[s] = None
for n in nkeys:
g = self.lr0_goto(I, n)
j = self.lr0_cidhash.get(id(g), -1)
if j >= 0:
st_goto[n] = j
descrip.append(f" {n:<30s} shift and go to state {j}")
action[st] = st_action
actionp[st] = st_actionp
goto[st] = st_goto
self.state_descriptions[st] = "\n".join(descrip)
# ----------------------------------------------------------------------
# Debugging output. Printing the LRTable object will produce a listing
# of all of the states, conflicts, and other details.
# ----------------------------------------------------------------------
def __str__(self):
out = []
for descrip in self.state_descriptions.values():
out.append(descrip)
if self.sr_conflicts or self.rr_conflicts:
out.append("\nConflicts:\n")
for state, tok, resolution in self.sr_conflicts:
out.append(
f"shift/reduce conflict for {tok} in state {state} resolved as {resolution}"
)
already_reported = set()
for state, rule, rejected in self.rr_conflicts:
if (state, id(rule), id(rejected)) in already_reported:
continue
out.append(
f"reduce/reduce conflict in state {state} resolved using rule {rule}"
)
out.append(f"rejected rule ({rejected}) in state {state}")
already_reported.add((state, id(rule), id(rejected)))
warned_never = set()
for state, rule, rejected in self.rr_conflicts:
if not rejected.reduced and (rejected not in warned_never):
out.append(f"Rule ({rejected}) is never reduced")
warned_never.add(rejected)
return "\n".join(out)
# Collect grammar rules from a function
def _collect_grammar_rules(func):
grammar = []
while func:
prodname = func.__name__
unwrapped = inspect.unwrap(func)
filename = unwrapped.__code__.co_filename
lineno = unwrapped.__code__.co_firstlineno
for rule, lineno in zip(func.rules, range(lineno + len(func.rules) - 1, 0, -1)):
syms = rule.split()
if syms[1:2] == [":"] or syms[1:2] == ["::="]:
grammar.append((func, filename, lineno, syms[0], syms[2:]))
else:
grammar.append((func, filename, lineno, prodname, syms))
func = getattr(func, "next_func", None)
return grammar
class ParserMetaDict(dict):
"""
Dictionary that allows decorated grammar rule functions to be overloaded
"""
def __setitem__(self, key, value):
if key in self and callable(value) and hasattr(value, "rules"):
value.next_func = self[key]
if not hasattr(value.next_func, "rules"):
raise GrammarError(
f"Redefinition of {key}. Perhaps an earlier {key} is missing @_"
)
super().__setitem__(key, value)
def __getitem__(self, key):
if key not in self and key.isupper() and key[:1] != "_":
return key.upper()
else:
return super().__getitem__(key)
class ParserMeta(type):
@classmethod
def __prepare__(meta, *args, **kwargs):
d = ParserMetaDict()
def _(rule, *extra):
rules = [rule, *extra]
def decorate(func):
func.rules = [*getattr(func, "rules", []), *rules[::-1]]
return func
return decorate
d["_"] = _
return d
def __new__(meta, clsname, bases, attributes):
del attributes["_"]
cls = super().__new__(meta, clsname, bases, attributes)
cls._build(list(attributes.items()))
return cls
class Parser(metaclass=ParserMeta):
# Logging object where debugging/diagnostic messages are sent
log = SlyLogger(sys.stderr)
# Debugging filename where parsetab.out data can be written
debugfile = None
@classmethod
def __validate_tokens(cls):
if not hasattr(cls, "tokens"):
cls.log.error("No token list is defined")
return False
if not cls.tokens:
cls.log.error("tokens is empty")
return False
if "error" in cls.tokens:
cls.log.error("Illegal token name 'error'. Is a reserved word")
return False
return True
@classmethod
def __validate_precedence(cls):
if not hasattr(cls, "precedence"):
cls.__preclist = []
return True
preclist = []
if not isinstance(cls.precedence, (list, tuple)):
cls.log.error("precedence must be a list or tuple")
return False
for level, p in enumerate(cls.precedence, start=1):
if not isinstance(p, (list, tuple)):
cls.log.error(
f"Bad precedence table entry {p!r}. Must be a list or tuple"
)
return False
if len(p) < 2:
cls.log.error(
f"Malformed precedence entry {p!r}. Must be (assoc, term, ..., term)"
)
return False
if not all(isinstance(term, str) for term in p):
cls.log.error("precedence items must be strings")
return False
assoc = p[0]
preclist.extend((term, assoc, level) for term in p[1:])
cls.__preclist = preclist
return True
@classmethod
def __validate_specification(cls):
"""
Validate various parts of the grammar specification
"""
if not cls.__validate_tokens():
return False
if not cls.__validate_precedence():
return False
return True
@classmethod
def __build_grammar(cls, rules):
"""
Build the grammar from the grammar rules
"""
grammar_rules = []
errors = ""
# Check for non-empty symbols
if not rules:
raise YaccError("No grammar rules are defined")
grammar = Grammar(cls.tokens)
# Set the precedence level for terminals
for term, assoc, level in cls.__preclist:
try:
grammar.set_precedence(term, assoc, level)
except GrammarError as e:
errors += f"{e}\n"
for name, func in rules:
try:
parsed_rule = _collect_grammar_rules(func)
for pfunc, rulefile, ruleline, prodname, syms in parsed_rule:
try:
grammar.add_production(
prodname, syms, pfunc, rulefile, ruleline
)
except GrammarError as e:
errors += f"{e}\n"
except SyntaxError as e:
errors += f"{e}\n"
try:
grammar.set_start(getattr(cls, "start", None))
except GrammarError as e:
errors += f"{e}\n"
undefined_symbols = grammar.undefined_symbols()
for sym, prod in undefined_symbols:
errors += (
"%s:%d: Symbol %r used, but not defined as a token or a rule\n"
% (prod.file, prod.line, sym)
)
unused_terminals = grammar.unused_terminals()
if unused_terminals:
unused_str = "{" + ",".join(unused_terminals) + "}"
cls.log.warning(
f'Token{"(s)" if len(unused_terminals) >1 else ""} {unused_str} defined, but not used'
)
unused_rules = grammar.unused_rules()
for prod in unused_rules:
cls.log.warning(
"%s:%d: Rule %r defined, but not used", prod.file, prod.line, prod.name
)
if len(unused_terminals) == 1:
cls.log.warning("There is 1 unused token")
if len(unused_terminals) > 1:
cls.log.warning("There are %d unused tokens", len(unused_terminals))
if len(unused_rules) == 1:
cls.log.warning("There is 1 unused rule")
if len(unused_rules) > 1:
cls.log.warning("There are %d unused rules", len(unused_rules))
unreachable = grammar.find_unreachable()
for u in unreachable:
cls.log.warning("Symbol %r is unreachable", u)
if len(undefined_symbols) == 0:
infinite = grammar.infinite_cycles()
for inf in infinite:
errors += "Infinite recursion detected for symbol %r\n" % inf
unused_prec = grammar.unused_precedence()
for term, assoc in unused_prec:
errors += "Precedence rule %r defined for unknown symbol %r\n" % (
assoc,
term,
)
cls._grammar = grammar
if errors:
raise YaccError("Unable to build grammar.\n" + errors)
@classmethod
def __build_lrtables(cls):
"""
Build the LR Parsing tables from the grammar
"""
lrtable = LRTable(cls._grammar)
num_sr = len(lrtable.sr_conflicts)
# Report shift/reduce and reduce/reduce conflicts
if num_sr != getattr(cls, "expected_shift_reduce", None):
if num_sr == 1:
cls.log.warning("1 shift/reduce conflict")
elif num_sr > 1:
cls.log.warning("%d shift/reduce conflicts", num_sr)
num_rr = len(lrtable.rr_conflicts)
if num_rr != getattr(cls, "expected_reduce_reduce", None):
if num_rr == 1:
cls.log.warning("1 reduce/reduce conflict")
elif num_rr > 1:
cls.log.warning("%d reduce/reduce conflicts", num_rr)
cls._lrtable = lrtable
return True
@classmethod
def __collect_rules(cls, definitions):
"""
Collect all of the tagged grammar rules
"""
rules = [
(name, value)
for name, value in definitions
if callable(value) and hasattr(value, "rules")
]
return rules
# ----------------------------------------------------------------------
# Build the LALR(1) tables. definitions is a list of (name, item) tuples
# of all definitions provided in the class, listed in the order in which
# they were defined. This method is triggered by a metaclass.
# ----------------------------------------------------------------------
@classmethod
def _build(cls, definitions):
if vars(cls).get("_build", False):
return
# Collect all of the grammar rules from the class definition
rules = cls.__collect_rules(definitions)
# Validate other parts of the grammar specification
if not cls.__validate_specification():
raise YaccError("Invalid parser specification")
# Build the underlying grammar object
cls.__build_grammar(rules)
# Build the LR tables
if not cls.__build_lrtables():
raise YaccError("Can't build parsing tables")
if cls.debugfile:
with open(cls.debugfile, "w") as f:
f.write(str(cls._grammar))
f.write("\n")
f.write(str(cls._lrtable))
cls.log.info(
"Parser debugging for %s written to %s", cls.__qualname__, cls.debugfile
)
# ----------------------------------------------------------------------
# Parsing Support. This is the parsing runtime that users use to
# ----------------------------------------------------------------------
def error(self, token):
"""
Default error handling function. This may be subclassed.
"""
if token:
lineno = getattr(token, "lineno", 0)
if lineno:
sys.stderr.write(
f"sly: Syntax error at line {lineno}, token={token.type}\n"
)
else:
sys.stderr.write(f"sly: Syntax error, token={token.type}")
else:
sys.stderr.write("sly: Parse error in input. EOF\n")
def errok(self):
"""
Clear the error status
"""
self.errorok = True
def restart(self):
"""
Force the parser to restart from a fresh state. Clears the statestack
"""
del self.statestack[:]
del self.symstack[:]
sym = YaccSymbol()
sym.type = "$end"
self.symstack.append(sym)
self.statestack.append(0)
self.state = 0
def parse(self, tokens):
"""
Parse the given input tokens.
"""
lookahead = None # Current lookahead symbol
lookaheadstack = [] # Stack of lookahead symbols
actions = (
self._lrtable.lr_action
) # Local reference to action table (to avoid lookup on self.)
goto = (
self._lrtable.lr_goto
) # Local reference to goto table (to avoid lookup on self.)
prod = (
self._grammar.Productions
) # Local reference to production list (to avoid lookup on self.)
defaulted_states = (
self._lrtable.defaulted_states
) # Local reference to defaulted states
pslice = YaccProduction(None) # Production object passed to grammar rules
errorcount = 0 # Used during error recovery
# Set up the state and symbol stacks
self.tokens = tokens
self.statestack = statestack = [] # Stack of parsing states
self.symstack = symstack = [] # Stack of grammar symbols
pslice._stack = symstack # Associate the stack with the production
self.restart()
errtoken = None # Err token
while True:
# Get the next symbol on the input. If a lookahead symbol
# is already set, we just use that. Otherwise, we'll pull
# the next token off of the lookaheadstack or from the lexer
if self.state not in defaulted_states:
if not lookahead:
if not lookaheadstack:
lookahead = next(tokens, None) # Get the next token
else:
lookahead = lookaheadstack.pop()
if not lookahead:
lookahead = YaccSymbol()
lookahead.type = "$end"
# Check the action table
ltype = lookahead.type
t = actions[self.state].get(ltype)
else:
t = defaulted_states[self.state]
if t is not None:
if t > 0:
# shift a symbol on the stack
statestack.append(t)
self.state = t
symstack.append(lookahead)
lookahead = None
# Decrease error count on successful shift
if errorcount:
errorcount -= 1
continue
if t < 0:
# reduce a symbol on the stack, emit a production
self.production = p = prod[-t]
pname = p.name
plen = p.len
pslice._namemap = p.namemap
# Call the production function
pslice._slice = symstack[-plen:] if plen else []
sym = YaccSymbol()
sym.type = pname
value = p.func(self, pslice)
if value is pslice:
value = (pname, *(s.value for s in pslice._slice))
sym.value = value
if plen:
del symstack[-plen:]
del statestack[-plen:]
symstack.append(sym)
self.state = goto[statestack[-1]][pname]
statestack.append(self.state)
continue
if t == 0:
n = symstack[-1]
result = getattr(n, "value", None)
return result
if t is None:
# We have some kind of parsing error here. To handle
# this, we are going to push the current token onto
# the tokenstack and replace it with an 'error' token.
# If there are any synchronization rules, they may
# catch it.
#
# In addition to pushing the error token, we call call
# the user defined error() function if this is the
# first syntax error. This function is only called if
# errorcount == 0.
if errorcount == 0 or self.errorok:
errorcount = ERROR_COUNT
self.errorok = False
if lookahead.type == "$end":
errtoken = None # End of file!
else:
errtoken = lookahead
tok = self.error(errtoken)
if tok:
# User must have done some kind of panic
# mode recovery on their own. The
# returned token is the next lookahead
lookahead = tok
self.errorok = True
continue
else:
# If at EOF. We just return. Basically dead.
if not errtoken:
return
else:
# Reset the error count. Unsuccessful token shifted
errorcount = ERROR_COUNT
# case 1: the statestack only has 1 entry on it. If we're in this state, the
# entire parse has been rolled back and we're completely hosed. The token is
# discarded and we just keep going.
if len(statestack) <= 1 and lookahead.type != "$end":
lookahead = None
self.state = 0
# Nuke the lookahead stack
del lookaheadstack[:]
continue
# case 2: the statestack has a couple of entries on it, but we're
# at the end of the file. nuke the top entry and generate an error token
# Start nuking entries on the stack
if lookahead.type == "$end":
# Whoa. We're really hosed here. Bail out
return
if lookahead.type != "error":
sym = symstack[-1]
if sym.type == "error":
# Hmmm. Error is on top of stack, we'll just nuke input
# symbol and continue
lookahead = None
continue
# Create the error symbol for the first time and make it the new lookahead symbol
t = YaccSymbol()
t.type = "error"
if hasattr(lookahead, "lineno"):
t.lineno = lookahead.lineno
if hasattr(lookahead, "index"):
t.index = lookahead.index
t.value = lookahead
lookaheadstack.append(lookahead)
lookahead = t
else:
sym = symstack.pop()
statestack.pop()
self.state = statestack[-1]
continue
# Call an error function here
raise RuntimeError("sly: internal parser error!!!\n")
|