summaryrefslogtreecommitdiff
path: root/test/test_timingharness.py
blob: 29e21f89f542aaf6d11022e241cec9fd9209c44c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
#!/usr/bin/env python3

from dfatool.dfatool import AnalyticModel, TimingData, pta_trace_to_aggregate
from dfatool.parameters import prune_dependent_parameters
import unittest


class TestModels(unittest.TestCase):
    def test_model_singlefile_rf24(self):
        raw_data = TimingData(["test-data/20190815_111745_nRF24_no-rx.json"])
        preprocessed_data = raw_data.get_preprocessed_data()
        by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data)
        model = AnalyticModel(by_name, parameters, arg_count)
        self.assertEqual(model.names, "setPALevel setRetries setup write".split(" "))
        static_model = model.get_static()
        self.assertAlmostEqual(static_model("setPALevel", "duration"), 146, places=0)
        self.assertAlmostEqual(static_model("setRetries", "duration"), 73, places=0)
        self.assertAlmostEqual(static_model("setup", "duration"), 6533, places=0)
        self.assertAlmostEqual(static_model("write", "duration"), 12634, places=0)

        for transition in "setPALevel setRetries setup write".split(" "):
            self.assertAlmostEqual(
                model.stats.param_dependence_ratio(transition, "duration", "channel"),
                0,
                places=2,
            )

        param_model, param_info = model.get_fitted()
        self.assertEqual(param_info("setPALevel", "duration"), None)
        self.assertEqual(param_info("setRetries", "duration"), None)
        self.assertEqual(param_info("setup", "duration"), None)
        self.assertEqual(
            param_info("write", "duration")["function"]._model_str,
            "0 + regression_arg(0) + regression_arg(1) * parameter(max_retry_count) + regression_arg(2) * parameter(retry_delay) + regression_arg(3) * parameter(max_retry_count) * parameter(retry_delay)",
        )

        self.assertAlmostEqual(
            param_info("write", "duration")["function"]._regression_args[0],
            1163,
            places=0,
        )
        self.assertAlmostEqual(
            param_info("write", "duration")["function"]._regression_args[1],
            464,
            places=0,
        )
        self.assertAlmostEqual(
            param_info("write", "duration")["function"]._regression_args[2], 1, places=0
        )
        self.assertAlmostEqual(
            param_info("write", "duration")["function"]._regression_args[3], 1, places=0
        )

    def test_dependent_parameter_pruning(self):
        raw_data = TimingData(["test-data/20190815_103347_nRF24_no-rx.json"])
        preprocessed_data = raw_data.get_preprocessed_data()
        by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data)
        prune_dependent_parameters(by_name, parameters)
        model = AnalyticModel(by_name, parameters, arg_count)
        self.assertEqual(
            model.names, "getObserveTx setPALevel setRetries setup write".split(" ")
        )
        static_model = model.get_static()
        self.assertAlmostEqual(static_model("getObserveTx", "duration"), 75, places=0)
        self.assertAlmostEqual(static_model("setPALevel", "duration"), 146, places=0)
        self.assertAlmostEqual(static_model("setRetries", "duration"), 73, places=0)
        self.assertAlmostEqual(static_model("setup", "duration"), 6533, places=0)
        self.assertAlmostEqual(static_model("write", "duration"), 12634, places=0)

        for transition in "getObserveTx setPALevel setRetries setup write".split(" "):
            self.assertAlmostEqual(
                model.stats.param_dependence_ratio(transition, "duration", "channel"),
                0,
                places=2,
            )

        param_model, param_info = model.get_fitted()
        self.assertEqual(param_info("getObserveTx", "duration"), None)
        self.assertEqual(param_info("setPALevel", "duration"), None)
        self.assertEqual(param_info("setRetries", "duration"), None)
        self.assertEqual(param_info("setup", "duration"), None)
        self.assertEqual(
            param_info("write", "duration")["function"]._model_str,
            "0 + regression_arg(0) + regression_arg(1) * parameter(max_retry_count) + regression_arg(2) * parameter(retry_delay) + regression_arg(3) * parameter(max_retry_count) * parameter(retry_delay)",
        )

        self.assertAlmostEqual(
            param_info("write", "duration")["function"]._regression_args[0],
            1163,
            places=0,
        )
        self.assertAlmostEqual(
            param_info("write", "duration")["function"]._regression_args[1],
            464,
            places=0,
        )
        self.assertAlmostEqual(
            param_info("write", "duration")["function"]._regression_args[2], 1, places=0
        )
        self.assertAlmostEqual(
            param_info("write", "duration")["function"]._regression_args[3], 1, places=0
        )

    def test_function_override(self):
        raw_data = TimingData(["test-data/20190815_122531_nRF24_no-rx.json"])
        preprocessed_data = raw_data.get_preprocessed_data()
        by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data)
        model = AnalyticModel(
            by_name,
            parameters,
            arg_count,
            function_override={
                (
                    "write",
                    "duration",
                ): "(parameter(auto_ack!) * (regression_arg(0) + regression_arg(1) * parameter(max_retry_count) + regression_arg(2) * parameter(retry_delay) + regression_arg(3) * parameter(max_retry_count) * parameter(retry_delay))) + ((1 - parameter(auto_ack!)) * regression_arg(4))"
            },
        )
        self.assertEqual(
            model.names, "setAutoAck setPALevel setRetries setup write".split(" ")
        )
        static_model = model.get_static()
        self.assertAlmostEqual(static_model("setAutoAck", "duration"), 72, places=0)
        self.assertAlmostEqual(static_model("setPALevel", "duration"), 146, places=0)
        self.assertAlmostEqual(static_model("setRetries", "duration"), 73, places=0)
        self.assertAlmostEqual(static_model("setup", "duration"), 6533, places=0)
        self.assertAlmostEqual(static_model("write", "duration"), 1181, places=0)

        for transition in "setAutoAck setPALevel setRetries setup write".split(" "):
            self.assertAlmostEqual(
                model.stats.param_dependence_ratio(transition, "duration", "channel"),
                0,
                places=2,
            )

        param_model, param_info = model.get_fitted()
        self.assertEqual(param_info("setAutoAck", "duration"), None)
        self.assertEqual(param_info("setPALevel", "duration"), None)
        self.assertEqual(param_info("setRetries", "duration"), None)
        self.assertEqual(param_info("setup", "duration"), None)
        self.assertEqual(
            param_info("write", "duration")["function"]._model_str,
            "(parameter(auto_ack!) * (regression_arg(0) + regression_arg(1) * parameter(max_retry_count) + regression_arg(2) * parameter(retry_delay) + regression_arg(3) * parameter(max_retry_count) * parameter(retry_delay))) + ((1 - parameter(auto_ack!)) * regression_arg(4))",
        )

        self.assertAlmostEqual(
            param_info("write", "duration")["function"]._regression_args[0],
            1162,
            places=0,
        )
        self.assertAlmostEqual(
            param_info("write", "duration")["function"]._regression_args[1],
            464,
            places=0,
        )
        self.assertAlmostEqual(
            param_info("write", "duration")["function"]._regression_args[2], 1, places=0
        )
        self.assertAlmostEqual(
            param_info("write", "duration")["function"]._regression_args[3], 1, places=0
        )
        self.assertAlmostEqual(
            param_info("write", "duration")["function"]._regression_args[4],
            1086,
            places=0,
        )


if __name__ == "__main__":
    unittest.main()