summaryrefslogtreecommitdiff
path: root/bin/populate-lut
blob: f24f109012c96cd9484d418df31aaa8e817b853f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
#!/usr/bin/env python3
# vim:tabstop=4 softtabstop=4 shiftwidth=4 textwidth=160 smarttab expandtab colorcolumn=160

from datetime import datetime, timedelta
from geopy.distance import distance
from progress.bar import Bar

import csv
import json
import numpy as np
import os
import psycopg2
import psycopg2.extras
import requests
import sys


class ProgressBar(Bar):
    sma_window = 500
    suffix = "%(percent).0f%% [%(elapsed_td)s/%(eta_td)s]"


conn = psycopg2.connect(
    dbname=os.getenv("GEOLOOKUP_DBNAME", "geo_to_stations"),
    user=os.getenv("GEOLOOKUP_DBUSER", "geo_to_stations"),
    password=os.getenv("GEOLOOKUP_DBPASS"),
    host=os.getenv("GEOLOOKUP_DBHOST", "localhost"),
)

shape = dict()
stops_by_latlon = dict()

routes_by_shape_id = dict()
trips_by_shape_id = dict()

name_to_eva = dict()
eva_to_name = dict()

lut_grid_step = 100

try:
    with open("data/iris-stations.json", "r") as f:
        for station in json.load(f):
            name_to_eva[station["name"]] = int(station["eva"])
            eva_to_name[int(station["eva"])] = station["name"]
except FileNotFoundError:
    print(
        "populate-lut requires a list of IRIS stations. Please run the following commands:"
    )
    print()
    print("mkdir -p data")
    print(
        "curl https://git.finalrewind.org/Travel-Status-DE-IRIS/plain/share/stations.json > data/iris-stations.json"
    )
    print()
    sys.exit(1)

try:
    with open("data/nvbw/trips.txt", "r") as f:
        pass
    with open("data/nvbw/shapes.txt", "r") as f:
        pass
    with open("data/nvbw/stop_times.txt", "r") as f:
        pass
except FileNotFoundError:
    print("populate-lut requires GTFS shapes of regional transit lines.")
    print(
        "At present, the best known resource is <https://www.nvbw.de/open-data/fahrplandaten/fahrplandaten-mit-liniennetz>."
    )
    print(
        "(https://www.nvbw.de/fileadmin/user_upload/service/open_data/fahrplandaten_mit_liniennetz/bwspnv.zip)"
    )
    print("Please download and extract it to data/nvbw.")
    sys.exit(1)

print("Loading trips ...")
with open("data/nvbw/trips.txt", "r") as f:
    f.readline()
    cr = csv.reader(f)
    for row in cr:
        route_id, trip_id, service_id, direction_id, block_id, shape_id = row
        if shape_id not in routes_by_shape_id:
            routes_by_shape_id[shape_id] = list()
        routes_by_shape_id[shape_id].append(route_id)
        if shape_id not in trips_by_shape_id:
            trips_by_shape_id[shape_id] = list()
        trips_by_shape_id[shape_id].append(trip_id)

print("Loading stop_times ...")
stops_by_tripid = dict()
with open("data/nvbw/stop_times.txt", "r") as f:
    f.readline()
    cr = csv.reader(f)
    for row in cr:
        (
            trip_id,
            stop_id,
            arrival_time,
            departure_time,
            stop_seq,
            stop_headsign,
            pickup_type,
            dropoff_type,
            dist,
        ) = row
        if trip_id not in stops_by_tripid:
            stops_by_tripid[trip_id] = list()
        stops_by_tripid[trip_id].append((stop_headsign, float(dist)))

print("Loading shapes ...")
with open("data/nvbw/shapes.txt", "r") as f:
    f.readline()
    cr = csv.reader(f)
    prev_lat, prev_lon = None, None
    prev_dist = 0
    for row in cr:
        shape_id, _, lat, lon, dist = row
        if shape_id not in shape:
            shape[shape_id] = list()
            prev_dist = 0
        lat = float(lat)
        lon = float(lon)
        dist = float(dist)
        if dist > prev_dist and dist - prev_dist > lut_grid_step:
            # ensure shape entries are no more than lut_grid_step meters apart
            for i in np.arange(lut_grid_step, dist - prev_dist, lut_grid_step):
                ratio = i / (dist - prev_dist)
                assert 0 <= ratio <= 1
                rel_lat = (prev_lat * ratio + lat * (1 - ratio)) / 2
                rel_lon = (prev_lon * ratio + lon * (1 - ratio)) / 2
                shape[shape_id].append((rel_lat, rel_lon, dist))
        shape[shape_id].append((lat, lon, dist))
        prev_dist = dist
        prev_lat = lat
        prev_lon = lon


def add_stops(lat, lon, stops):
    evas = list()
    for stop in stops:
        try:
            evas.append(name_to_eva[stop])
        except KeyError:
            try:
                evas.append(name_to_eva[stop.replace(" (", "(")])
            except KeyError:
                pass

    add_evas(lat, lon, evas)


def add_evas(lat, lon, evas):
    lut_lat_center = round(lat * 1000)
    lut_lon_center = round(lon * 1000)

    for lut_lat in range(lut_lat_center - 0, lut_lat_center + 1):
        for lut_lon in range(lut_lon_center - 0, lut_lon_center + 1):
            if (lut_lat, lut_lon) not in stops_by_latlon:
                stops_by_latlon[(lut_lat, lut_lon)] = set()
            stops_by_latlon[(lut_lat, lut_lon)].update(evas)


# Here be dragons. I don't recall what this code does. It shouldn't be too complicated, though.

num_shapes = len(shape.keys())

for shape_id in ProgressBar("Calculating neighoubrs", max=num_shapes).iter(
    shape.keys()
):
    for trip_id in trips_by_shape_id[shape_id]:
        stops = stops_by_tripid[trip_id]
        first_stop = stops[0]
        last_stop = stops[-1]
        for lat, lon, shape_dist in shape[shape_id]:
            assert first_stop[1] <= shape_dist <= last_stop[1]
            for i, (stop_name, stop_dist) in enumerate(stops):
                if (
                    stop_dist <= shape_dist
                    and i + 1 < len(stops)
                    and stops[i + 1][1] >= shape_dist
                ):
                    add_stops(lat, lon, (stop_name, stops[i + 1][0]))

try:

    class Polyline:
        def __init__(self, json_data):
            self.coordinates = json_data["polyline"]

    with open("data/polydump.json", "r") as f:
        polylines = list(map(Polyline, json.load(f)))

    def add_leg(coordinates, from_eva, to_eva):
        for lat, lon in coordinates:
            add_evas(lat, lon, (from_eva, to_eva))

    for polyline in ProgressBar("Adding polydump data", max=len(polylines)).iter(
        polylines
    ):
        prev_eva = None
        leg = list()
        for coord in polyline.coordinates:
            lat = coord[1]
            lon = coord[0]
            if leg:
                prev_lat = leg[-1][0]
                prev_lon = leg[-1][1]
                prev_dist = distance((prev_lat, prev_lon), (lat, lon)).m
                for i in np.arange(lut_grid_step, prev_dist, lut_grid_step):
                    ratio = i / prev_dist
                    assert 0 <= ratio <= 1
                    rel_lat = (prev_lat * ratio + lat * (1 - ratio)) / 2
                    rel_lon = (prev_lon * ratio + lon * (1 - ratio)) / 2
                    leg.append((rel_lat, rel_lon))
            leg.append((lat, lon))
            if len(coord) > 2 and coord[2] != prev_eva:
                if prev_eva:
                    add_leg(leg, prev_eva, coord[2])
                prev_eva = coord[2]
                leg = list()

except FileNotFoundError:
    pass

num_latlons = len(stops_by_latlon.keys())

with conn.cursor() as cur:
    cur.execute("drop table if exists stations")
    cur.execute(
        """create table stations (
        lat integer not null,
        lon integer not null,
        stations jsonb not null,
        primary key (lat, lon)
        )
    """
    )

insert_groups = list()
insert_group = list()
for (lat, lon), stops in stops_by_latlon.items():
    insert_group.append((lat, lon, json.dumps(list(stops))))
    if len(insert_group) >= 100:
        insert_groups.append(insert_group)
        insert_group = list()

insert_groups.append(insert_group)

for insert_group in ProgressBar("Inserting coordinates", max=len(insert_groups)).iter(
    insert_groups
):
    with conn.cursor() as cur:
        psycopg2.extras.execute_values(
            cur, """insert into stations (lat, lon, stations) values %s""", insert_group
        )

conn.commit()