summaryrefslogtreecommitdiff
path: root/bin
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2020-10-28 14:08:13 +0100
committerDaniel Friesel <daniel.friesel@uos.de>2020-10-28 14:08:13 +0100
commit2b90be7343ac363a105c93313808184abe646dbb (patch)
tree80bbe97662b6fd6456eeb9fa262cc871324ea75f /bin
parent3077eae6c9e6bf979e0a5ab56422edb20d7aa551 (diff)
proper pelt support
Diffstat (limited to 'bin')
-rwxr-xr-xbin/msp430-etv195
1 files changed, 177 insertions, 18 deletions
diff --git a/bin/msp430-etv b/bin/msp430-etv
index 9cf0fb4..8cb02e2 100755
--- a/bin/msp430-etv
+++ b/bin/msp430-etv
@@ -24,6 +24,7 @@ OPTIONS
import argparse
import itertools
+import json
import matplotlib.pyplot as plt
import numpy as np
import os
@@ -35,6 +36,9 @@ import time
opt = dict()
+from multiprocessing import Pool
+import ruptures as rpt
+
def running_mean(x: np.ndarray, N: int) -> np.ndarray:
"""
@@ -47,9 +51,101 @@ def running_mean(x: np.ndarray, N: int) -> np.ndarray:
# to ensure that output.shape == input.shape, we need to insert data
# at the boundaries
boundary_array = np.insert(x, 0, np.full((N // 2), x[0]))
- boundary_array = np.append(boundary_array, np.full((N // 2 + N % 2), x[-1]))
- cumsum = np.cumsum(boundary_array)
- return (cumsum[N:] - cumsum[:-N]) / N
+ boundary_array = np.append(boundary_array, np.full((N // 2 + N % 2 - 1), x[-1]))
+
+ return np.convolve(boundary_array, np.ones((N,)) / N, mode="valid")
+
+
+class NpEncoder(json.JSONEncoder):
+ def default(self, obj):
+ if isinstance(obj, np.integer):
+ return int(obj)
+ elif isinstance(obj, np.floating):
+ return float(obj)
+ elif isinstance(obj, np.ndarray):
+ return obj.tolist()
+ else:
+ return super(NpEncoder, self).default(obj)
+
+
+def PELT_get_changepoints(algo, penalty):
+ res = (penalty, algo.predict(pen=penalty))
+ return res
+
+
+class PELT:
+ def __init__(self, signal, num_samples=None):
+ self.signal = signal
+ self.model = "l1"
+ self.jump = 1
+ self.min_dist = 46
+
+ if num_samples is not None:
+ self.ds_factor = len(signal) // num_samples
+ else:
+ self.ds_factor = 1
+
+ self.jump = self.ds_factor
+
+ def norm_signal(self, signal, scaler=25):
+ max_val = max(np.abs(signal))
+ normed_signal = np.zeros(shape=len(signal))
+ for i, signal_i in enumerate(signal):
+ normed_signal[i] = signal_i / max_val
+ normed_signal[i] = normed_signal[i] * scaler
+ return normed_signal
+
+ def get_changepoints(self):
+ # imported here as ruptures is only used for changepoint detection
+ import ruptures
+
+ algo = ruptures.Pelt(
+ model=self.model, jump=self.jump, min_size=self.min_dist
+ ).fit(self.norm_signal(self.signal))
+ queue = list()
+ for i in range(0, 100):
+ queue.append((algo, i))
+ with Pool() as pool:
+ changepoints = pool.starmap(PELT_get_changepoints, queue)
+ changepoints_by_penalty = dict()
+ for res in changepoints:
+ changepoints_by_penalty[res[0]] = res[1]
+ num_changepoints = list()
+ for i in range(0, 100):
+ num_changepoints.append(len(changepoints_by_penalty[i]))
+
+ # Find plateau
+ start_index = -1
+ end_index = -1
+ longest_start = -1
+ longest_end = -1
+ prev_val = -1
+ for i, num_bkpts in enumerate(num_changepoints):
+ if num_bkpts != prev_val:
+ end_index = i - 1
+ if end_index - start_index > longest_end - longest_start:
+ # currently found sequence is the longest found yet
+ longest_start = start_index
+ longest_end = end_index
+ start_index = i
+ if i == len(num_changepoints) - 1:
+ # end sequence with last value
+ end_index = i
+ # # since it is not guaranteed that this is the end of the plateau, assume the mid
+ # # of the plateau was hit.
+ # size = end_index - start_index
+ # end_index = end_index + size
+ # However this is not the clean solution. Better if search interval is widened
+ # with range_min and range_max
+ if end_index - start_index > longest_end - longest_start:
+ # last found sequence is the longest found yet
+ longest_start = start_index
+ longest_end = end_index
+ start_index = i
+ prev_val = num_bkpts
+ middle_of_plateau = longest_start + (longest_start - longest_start) // 2
+ changepoints = np.array(changepoints_by_penalty[middle_of_plateau])
+ return changepoints
def measure_data(filename, duration):
@@ -94,6 +190,28 @@ def measure_data(filename, duration):
return output
+def export_json(filename, data=dict()):
+ with open(filename, "w") as f:
+ json.dump(data, f, cls=NpEncoder)
+
+
+def detect_changepoints(timestamps, trace, num_samples):
+ pelt = PELT(running_mean(trace, 10), num_samples=num_samples)
+ changepoints = pelt.get_changepoints()
+ prev = 0
+ ret = list()
+ for cp in changepoints:
+ cp = cp - 1
+ ret.append(
+ {
+ "interval": [timestamps[prev], timestamps[cp]],
+ "mean": np.mean(trace[prev:cp]),
+ }
+ )
+ prev = cp
+ return ret
+
+
def peak_search(data, lower, upper, direction_function):
while upper - lower > 1e-6:
bs_test = np.mean([lower, upper])
@@ -129,6 +247,12 @@ def main():
"--save", metavar="FILE", type=str, help="Save measurement data in FILE"
)
parser.add_argument(
+ "--json-export",
+ metavar="FILENAME",
+ type=str,
+ help="Export analysis results (e.g. changepoints) to JSON file",
+ )
+ parser.add_argument(
"--skip",
metavar="COUNT",
type=int,
@@ -136,6 +260,15 @@ def main():
help="Skip COUNT data samples. This is useful to avoid startup code influencing the results of a long-running measurement",
)
parser.add_argument(
+ "--limit",
+ type=float,
+ metavar="N",
+ help="Limit analysis to the first N seconds of data",
+ )
+ parser.add_argument(
+ "--pelt", metavar="JUMP", type=int, help="Perform changepoint detection"
+ )
+ parser.add_argument(
"--threshold",
metavar="WATTS",
type=str,
@@ -198,20 +331,30 @@ def main():
energy_overflow_count = 0
prev_total_energy = 0
for i, line in enumerate(data_lines):
- if i >= args.skip:
- fields = line.split(" ")
- if len(fields) == 4:
- timestamp, current, voltage, total_energy = map(int, fields)
- elif len(fields) == 5:
- cpustate = fields[0]
- timestamp, current, voltage, total_energy = map(int, fields[1:])
- else:
- raise RuntimeError('cannot parse line "{}"'.format(line))
- if total_energy < 0 and prev_total_energy > 0:
- energy_overflow_count += 1
- prev_total_energy = total_energy
- total_energy += energy_overflow_count * (2 ** 32)
- data[i - args.skip] = [timestamp, current, voltage, total_energy]
+ if i < args.skip:
+ continue
+
+ fields = line.split(" ")
+ if len(fields) == 4:
+ timestamp, current, voltage, total_energy = map(int, fields)
+ elif len(fields) == 5:
+ cpustate = fields[0]
+ timestamp, current, voltage, total_energy = map(int, fields[1:])
+ else:
+ raise RuntimeError('cannot parse line "{}"'.format(line))
+ if total_energy < 0 and prev_total_energy > 0:
+ energy_overflow_count += 1
+ prev_total_energy = total_energy
+ total_energy += energy_overflow_count * (2 ** 32)
+
+ if args.limit is not None and timestamp * 1e-6 > args.limit:
+ final_index = i - args.skip - 1
+ break
+
+ data[i - args.skip] = [timestamp, current, voltage, total_energy]
+
+ if args.limit is not None:
+ data = data[:final_index]
m_duration_us = data[-1, 0] - data[0, 0]
m_energy_nj = data[-1, 3] - data[0, 3]
@@ -338,6 +481,16 @@ def main():
)
smooth_power = running_mean(power_from_energy, 10)
+ if args.pelt:
+ power_changepoints = detect_changepoints(
+ data[1:, 0] * 1e-6, power_from_energy, num_samples=args.pelt
+ )
+ current_changepoints = detect_changepoints(
+ data[1:, 0] * 1e-6,
+ power_from_energy / (data[1:, 2] * 1e-3),
+ num_samples=args.pelt,
+ )
+
if args.stat:
mean_voltage = np.mean(data[:, 2] * 1e-3)
mean_current = np.mean(data[:, 1] * 1e-9)
@@ -359,6 +512,13 @@ def main():
)
)
+ if args.json_export:
+ extra_data = dict()
+ if args.pelt:
+ extra_data["power_changepoints"] = power_changepoints
+ extra_data["current_changepoints"] = current_changepoints
+ export_json(args.json_export, extra_data)
+
if args.plot:
if args.plot == "U":
# mV
@@ -406,7 +566,6 @@ def main():
label="mean(I, 10)",
markersize=1,
)
- PELT().get_changepoints((smooth_power / (data[1:, 2] * 1e-3))[:400])
plt.legend(handles=[energyhandle, meanhandle])
plt.ylabel("Current [A]")
else: