diff options
author | Daniel Friesel <daniel.friesel@uos.de> | 2020-10-28 14:08:13 +0100 |
---|---|---|
committer | Daniel Friesel <daniel.friesel@uos.de> | 2020-10-28 14:08:13 +0100 |
commit | 2b90be7343ac363a105c93313808184abe646dbb (patch) | |
tree | 80bbe97662b6fd6456eeb9fa262cc871324ea75f /bin | |
parent | 3077eae6c9e6bf979e0a5ab56422edb20d7aa551 (diff) |
proper pelt support
Diffstat (limited to 'bin')
-rwxr-xr-x | bin/msp430-etv | 195 |
1 files changed, 177 insertions, 18 deletions
diff --git a/bin/msp430-etv b/bin/msp430-etv index 9cf0fb4..8cb02e2 100755 --- a/bin/msp430-etv +++ b/bin/msp430-etv @@ -24,6 +24,7 @@ OPTIONS import argparse import itertools +import json import matplotlib.pyplot as plt import numpy as np import os @@ -35,6 +36,9 @@ import time opt = dict() +from multiprocessing import Pool +import ruptures as rpt + def running_mean(x: np.ndarray, N: int) -> np.ndarray: """ @@ -47,9 +51,101 @@ def running_mean(x: np.ndarray, N: int) -> np.ndarray: # to ensure that output.shape == input.shape, we need to insert data # at the boundaries boundary_array = np.insert(x, 0, np.full((N // 2), x[0])) - boundary_array = np.append(boundary_array, np.full((N // 2 + N % 2), x[-1])) - cumsum = np.cumsum(boundary_array) - return (cumsum[N:] - cumsum[:-N]) / N + boundary_array = np.append(boundary_array, np.full((N // 2 + N % 2 - 1), x[-1])) + + return np.convolve(boundary_array, np.ones((N,)) / N, mode="valid") + + +class NpEncoder(json.JSONEncoder): + def default(self, obj): + if isinstance(obj, np.integer): + return int(obj) + elif isinstance(obj, np.floating): + return float(obj) + elif isinstance(obj, np.ndarray): + return obj.tolist() + else: + return super(NpEncoder, self).default(obj) + + +def PELT_get_changepoints(algo, penalty): + res = (penalty, algo.predict(pen=penalty)) + return res + + +class PELT: + def __init__(self, signal, num_samples=None): + self.signal = signal + self.model = "l1" + self.jump = 1 + self.min_dist = 46 + + if num_samples is not None: + self.ds_factor = len(signal) // num_samples + else: + self.ds_factor = 1 + + self.jump = self.ds_factor + + def norm_signal(self, signal, scaler=25): + max_val = max(np.abs(signal)) + normed_signal = np.zeros(shape=len(signal)) + for i, signal_i in enumerate(signal): + normed_signal[i] = signal_i / max_val + normed_signal[i] = normed_signal[i] * scaler + return normed_signal + + def get_changepoints(self): + # imported here as ruptures is only used for changepoint detection + import ruptures + + algo = ruptures.Pelt( + model=self.model, jump=self.jump, min_size=self.min_dist + ).fit(self.norm_signal(self.signal)) + queue = list() + for i in range(0, 100): + queue.append((algo, i)) + with Pool() as pool: + changepoints = pool.starmap(PELT_get_changepoints, queue) + changepoints_by_penalty = dict() + for res in changepoints: + changepoints_by_penalty[res[0]] = res[1] + num_changepoints = list() + for i in range(0, 100): + num_changepoints.append(len(changepoints_by_penalty[i])) + + # Find plateau + start_index = -1 + end_index = -1 + longest_start = -1 + longest_end = -1 + prev_val = -1 + for i, num_bkpts in enumerate(num_changepoints): + if num_bkpts != prev_val: + end_index = i - 1 + if end_index - start_index > longest_end - longest_start: + # currently found sequence is the longest found yet + longest_start = start_index + longest_end = end_index + start_index = i + if i == len(num_changepoints) - 1: + # end sequence with last value + end_index = i + # # since it is not guaranteed that this is the end of the plateau, assume the mid + # # of the plateau was hit. + # size = end_index - start_index + # end_index = end_index + size + # However this is not the clean solution. Better if search interval is widened + # with range_min and range_max + if end_index - start_index > longest_end - longest_start: + # last found sequence is the longest found yet + longest_start = start_index + longest_end = end_index + start_index = i + prev_val = num_bkpts + middle_of_plateau = longest_start + (longest_start - longest_start) // 2 + changepoints = np.array(changepoints_by_penalty[middle_of_plateau]) + return changepoints def measure_data(filename, duration): @@ -94,6 +190,28 @@ def measure_data(filename, duration): return output +def export_json(filename, data=dict()): + with open(filename, "w") as f: + json.dump(data, f, cls=NpEncoder) + + +def detect_changepoints(timestamps, trace, num_samples): + pelt = PELT(running_mean(trace, 10), num_samples=num_samples) + changepoints = pelt.get_changepoints() + prev = 0 + ret = list() + for cp in changepoints: + cp = cp - 1 + ret.append( + { + "interval": [timestamps[prev], timestamps[cp]], + "mean": np.mean(trace[prev:cp]), + } + ) + prev = cp + return ret + + def peak_search(data, lower, upper, direction_function): while upper - lower > 1e-6: bs_test = np.mean([lower, upper]) @@ -129,6 +247,12 @@ def main(): "--save", metavar="FILE", type=str, help="Save measurement data in FILE" ) parser.add_argument( + "--json-export", + metavar="FILENAME", + type=str, + help="Export analysis results (e.g. changepoints) to JSON file", + ) + parser.add_argument( "--skip", metavar="COUNT", type=int, @@ -136,6 +260,15 @@ def main(): help="Skip COUNT data samples. This is useful to avoid startup code influencing the results of a long-running measurement", ) parser.add_argument( + "--limit", + type=float, + metavar="N", + help="Limit analysis to the first N seconds of data", + ) + parser.add_argument( + "--pelt", metavar="JUMP", type=int, help="Perform changepoint detection" + ) + parser.add_argument( "--threshold", metavar="WATTS", type=str, @@ -198,20 +331,30 @@ def main(): energy_overflow_count = 0 prev_total_energy = 0 for i, line in enumerate(data_lines): - if i >= args.skip: - fields = line.split(" ") - if len(fields) == 4: - timestamp, current, voltage, total_energy = map(int, fields) - elif len(fields) == 5: - cpustate = fields[0] - timestamp, current, voltage, total_energy = map(int, fields[1:]) - else: - raise RuntimeError('cannot parse line "{}"'.format(line)) - if total_energy < 0 and prev_total_energy > 0: - energy_overflow_count += 1 - prev_total_energy = total_energy - total_energy += energy_overflow_count * (2 ** 32) - data[i - args.skip] = [timestamp, current, voltage, total_energy] + if i < args.skip: + continue + + fields = line.split(" ") + if len(fields) == 4: + timestamp, current, voltage, total_energy = map(int, fields) + elif len(fields) == 5: + cpustate = fields[0] + timestamp, current, voltage, total_energy = map(int, fields[1:]) + else: + raise RuntimeError('cannot parse line "{}"'.format(line)) + if total_energy < 0 and prev_total_energy > 0: + energy_overflow_count += 1 + prev_total_energy = total_energy + total_energy += energy_overflow_count * (2 ** 32) + + if args.limit is not None and timestamp * 1e-6 > args.limit: + final_index = i - args.skip - 1 + break + + data[i - args.skip] = [timestamp, current, voltage, total_energy] + + if args.limit is not None: + data = data[:final_index] m_duration_us = data[-1, 0] - data[0, 0] m_energy_nj = data[-1, 3] - data[0, 3] @@ -338,6 +481,16 @@ def main(): ) smooth_power = running_mean(power_from_energy, 10) + if args.pelt: + power_changepoints = detect_changepoints( + data[1:, 0] * 1e-6, power_from_energy, num_samples=args.pelt + ) + current_changepoints = detect_changepoints( + data[1:, 0] * 1e-6, + power_from_energy / (data[1:, 2] * 1e-3), + num_samples=args.pelt, + ) + if args.stat: mean_voltage = np.mean(data[:, 2] * 1e-3) mean_current = np.mean(data[:, 1] * 1e-9) @@ -359,6 +512,13 @@ def main(): ) ) + if args.json_export: + extra_data = dict() + if args.pelt: + extra_data["power_changepoints"] = power_changepoints + extra_data["current_changepoints"] = current_changepoints + export_json(args.json_export, extra_data) + if args.plot: if args.plot == "U": # mV @@ -406,7 +566,6 @@ def main(): label="mean(I, 10)", markersize=1, ) - PELT().get_changepoints((smooth_power / (data[1:, 2] * 1e-3))[:400]) plt.legend(handles=[energyhandle, meanhandle]) plt.ylabel("Current [A]") else: |