summaryrefslogtreecommitdiff
path: root/bin
diff options
context:
space:
mode:
authorDaniel Friesel <daniel.friesel@uos.de>2020-05-20 08:32:12 +0200
committerDaniel Friesel <daniel.friesel@uos.de>2020-05-20 08:32:12 +0200
commit30d7cc1b5d75f98eaa0ea5ae97f4f42eef57ad72 (patch)
treeb55d79749303250fa2637a11b550da72e59726e0 /bin
parent68dd6506fb4650ef115671ed5620d2df8b57deb2 (diff)
autoformat the code (using black(1))
Diffstat (limited to 'bin')
-rwxr-xr-xbin/msp430-etv253
1 files changed, 160 insertions, 93 deletions
diff --git a/bin/msp430-etv b/bin/msp430-etv
index 5356f01..624f91f 100755
--- a/bin/msp430-etv
+++ b/bin/msp430-etv
@@ -15,6 +15,7 @@ import time
opt = dict()
+
def running_mean(x: np.ndarray, N: int) -> np.ndarray:
"""
Compute `N` elements wide running average over `x`.
@@ -31,28 +32,35 @@ def running_mean(x: np.ndarray, N: int) -> np.ndarray:
cumsum = np.cumsum(boundary_array)
return (cumsum[N:] - cumsum[:-N]) / N
+
def measure_data(filename, duration):
# libmsp430.so must be available
- if not 'LD_LIBRARY_PATH' in os.environ:
- os.environ['LD_LIBRARY_PATH'] = '{}/var/projects/msp430/MSP430Flasher_1.3.15'.format(os.environ['HOME'])
+ if not "LD_LIBRARY_PATH" in os.environ:
+ os.environ[
+ "LD_LIBRARY_PATH"
+ ] = "{}/var/projects/msp430/MSP430Flasher_1.3.15".format(os.environ["HOME"])
# https://github.com/carrotIndustries/energytrace-util must be available
- energytrace_cmd = 'energytrace'
+ energytrace_cmd = "energytrace"
if which(energytrace_cmd) is None:
- energytrace_cmd = '{}/var/source/energytrace-util/energytrace64'.format(os.environ['HOME'])
+ energytrace_cmd = "{}/var/source/energytrace-util/energytrace64".format(
+ os.environ["HOME"]
+ )
if filename is not None:
- output_handle = open(filename, 'w+')
+ output_handle = open(filename, "w+")
else:
- output_handle = tempfile.TemporaryFile('w+')
+ output_handle = tempfile.TemporaryFile("w+")
- energytrace = subprocess.Popen([energytrace_cmd, str(duration)], stdout = output_handle, universal_newlines = True)
+ energytrace = subprocess.Popen(
+ [energytrace_cmd, str(duration)], stdout=output_handle, universal_newlines=True
+ )
try:
if duration:
time.sleep(duration)
else:
- print('Press Ctrl+C to stop measurement')
+ print("Press Ctrl+C to stop measurement")
while True:
time.sleep(3600)
except KeyboardInterrupt:
@@ -66,8 +74,10 @@ def measure_data(filename, duration):
return output
+
def show_help():
- print('''msp430-etv - MSP430 EnergyTrace Visualizer
+ print(
+ """msp430-etv - MSP430 EnergyTrace Visualizer
USAGE
@@ -117,7 +127,9 @@ For data measurements (i.e., any invocation not using --load),
energytrace-util <https://github.com/carrotIndustries/energytrace-util>
must be available in $PATH and libmsp430.so must be located in the
LD library search path (e.g. LD_LIBRARY_PATH=../MSP430Flasher).
- ''')
+ """
+ )
+
def peak_search(data, lower, upper, direction_function):
while upper - lower > 1e-6:
@@ -134,6 +146,7 @@ def peak_search(data, lower, upper, direction_function):
upper = bs_test
return None
+
def peak_search2(data, lower, upper, check_function):
for power in np.arange(lower, upper, 1e-6):
peakcount = itertools.groupby(data, lambda x: x >= power)
@@ -143,61 +156,62 @@ def peak_search2(data, lower, upper, check_function):
return power
return None
-if __name__ == '__main__':
+
+if __name__ == "__main__":
try:
- optspec = ('help load= save= skip= threshold= threshold-peakcount= plot stat histogram=')
- raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(' '))
+ optspec = "help load= save= skip= threshold= threshold-peakcount= plot stat histogram="
+ raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(" "))
for option, parameter in raw_opts:
- optname = re.sub(r'^--', '', option)
+ optname = re.sub(r"^--", "", option)
opt[optname] = parameter
- if 'help' in opt:
+ if "help" in opt:
show_help()
sys.exit(0)
- if not 'load' in opt:
+ if not "load" in opt:
duration = int(args[0])
- if not 'save' in opt:
- opt['save'] = None
+ if not "save" in opt:
+ opt["save"] = None
- if 'skip' in opt:
- opt['skip'] = int(opt['skip'])
+ if "skip" in opt:
+ opt["skip"] = int(opt["skip"])
else:
- opt['skip'] = 0
+ opt["skip"] = 0
- if 'threshold' in opt and opt['threshold'] != 'mean':
- opt['threshold'] = float(opt['threshold'])
+ if "threshold" in opt and opt["threshold"] != "mean":
+ opt["threshold"] = float(opt["threshold"])
- if 'threshold-peakcount' in opt:
- opt['threshold-peakcount'] = int(opt['threshold-peakcount'])
+ if "threshold-peakcount" in opt:
+ opt["threshold-peakcount"] = int(opt["threshold-peakcount"])
except getopt.GetoptError as err:
print(err)
sys.exit(2)
except IndexError:
- print('Usage: msp430-etv <duration>')
+ print("Usage: msp430-etv <duration>")
sys.exit(2)
except ValueError:
- print('Error: duration or skip is not a number')
+ print("Error: duration or skip is not a number")
sys.exit(2)
- if 'load' in opt:
- with open(opt['load'], 'r') as f:
+ if "load" in opt:
+ with open(opt["load"], "r") as f:
log_data = f.read()
else:
- log_data = measure_data(opt['save'], duration)
+ log_data = measure_data(opt["save"], duration)
- lines = log_data.split('\n')
- data_count = sum(map(lambda x: len(x) > 0 and x[0] != '#', lines))
- data_lines = filter(lambda x: len(x) > 0 and x[0] != '#', lines)
+ lines = log_data.split("\n")
+ data_count = sum(map(lambda x: len(x) > 0 and x[0] != "#", lines))
+ data_lines = filter(lambda x: len(x) > 0 and x[0] != "#", lines)
- data = np.empty((data_count - opt['skip'], 4))
+ data = np.empty((data_count - opt["skip"], 4))
for i, line in enumerate(data_lines):
- if i >= opt['skip']:
- fields = line.split(' ')
+ if i >= opt["skip"]:
+ fields = line.split(" ")
if len(fields) == 4:
timestamp, current, voltage, total_energy = map(int, fields)
elif len(fields) == 5:
@@ -205,24 +219,28 @@ if __name__ == '__main__':
timestamp, current, voltage, total_energy = map(int, fields[1:])
else:
raise RuntimeError('cannot parse line "{}"'.format(line))
- data[i - opt['skip']] = [timestamp, current, voltage, total_energy]
+ data[i - opt["skip"]] = [timestamp, current, voltage, total_energy]
m_duration_us = data[-1, 0] - data[0, 0]
m_energy_nj = data[-1, 3] - data[0, 3]
# mV * nA * us = aJ (1e-18 J) -> use factor 1e-6 to get pJ (1e-12 J)
- print('{:d} measurements in {:.2f} s = {:.0f} Hz sample rate'.format(
- data_count, m_duration_us * 1e-6, data_count / (m_duration_us * 1e-6)))
+ print(
+ "{:d} measurements in {:.2f} s = {:.0f} Hz sample rate".format(
+ data_count, m_duration_us * 1e-6, data_count / (m_duration_us * 1e-6)
+ )
+ )
- print('Reported energy: E = {:f} J'.format(m_energy_nj * 1e-9))
+ print("Reported energy: E = {:f} J".format(m_energy_nj * 1e-9))
# nJ / us = mW -> (nJ * 1e-9) / (us * 1e-6) = W
# Do not use power = data[:, 1] * data[:, 2] * 1e-12 here: nA values provided by the EnergyTrace library in data[:, 1] are heavily filtered and mostly
# useless for visualization and calculation. They often do not agree with the nJ values in data[:, 3].
- power = ((data[1:, 3] - data[:-1, 3]) * 1e-9) / ((data[1:, 0] - data[:-1, 0]) * 1e-6)
-
+ power = ((data[1:, 3] - data[:-1, 3]) * 1e-9) / (
+ (data[1:, 0] - data[:-1, 0]) * 1e-6
+ )
- if 'threshold-peakcount' in opt:
+ if "threshold-peakcount" in opt:
bs_mean = np.mean(power)
# Finding the correct threshold is tricky. If #peaks < peakcont, our
@@ -238,85 +256,134 @@ if __name__ == '__main__':
# #peaks != peakcount and threshold >= mean, we go down.
# If that doesn't work, we fall back to a linear search in 1 µW steps
def direction_function(peakcount, power):
- if peakcount == opt['threshold-peakcount']:
- return 0;
+ if peakcount == opt["threshold-peakcount"]:
+ return 0
if power < bs_mean:
- return 1;
- return -1;
+ return 1
+ return -1
+
threshold = peak_search(power, np.min(power), np.max(power), direction_function)
if threshold == None:
- threshold = peak_search2(power, np.min(power), np.max(power), direction_function)
+ threshold = peak_search2(
+ power, np.min(power), np.max(power), direction_function
+ )
if threshold != None:
- print('Threshold set to {:.0f} µW : {:.9f}'.format(threshold * 1e6, threshold))
- opt['threshold'] = threshold
+ print(
+ "Threshold set to {:.0f} µW : {:.9f}".format(
+ threshold * 1e6, threshold
+ )
+ )
+ opt["threshold"] = threshold
else:
- print('Found no working threshold')
+ print("Found no working threshold")
- if 'threshold' in opt:
- if opt['threshold'] == 'mean':
- opt['threshold'] = np.mean(power)
- print('Threshold set to {:.0f} µW : {:.9f}'.format(opt['threshold'] * 1e6, opt['threshold']))
+ if "threshold" in opt:
+ if opt["threshold"] == "mean":
+ opt["threshold"] = np.mean(power)
+ print(
+ "Threshold set to {:.0f} µW : {:.9f}".format(
+ opt["threshold"] * 1e6, opt["threshold"]
+ )
+ )
baseline_mean = 0
- if np.any(power < opt['threshold']):
- baseline_mean = np.mean(power[power < opt['threshold']])
- print('Baseline mean: {:.0f} µW : {:.9f}'.format(
- baseline_mean * 1e6, baseline_mean))
- if np.any(power >= opt['threshold']):
- print('Peak mean: {:.0f} µW : {:.9f}'.format(
- np.mean(power[power >= opt['threshold']]) * 1e6,
- np.mean(power[power >= opt['threshold']])))
+ if np.any(power < opt["threshold"]):
+ baseline_mean = np.mean(power[power < opt["threshold"]])
+ print(
+ "Baseline mean: {:.0f} µW : {:.9f}".format(
+ baseline_mean * 1e6, baseline_mean
+ )
+ )
+ if np.any(power >= opt["threshold"]):
+ print(
+ "Peak mean: {:.0f} µW : {:.9f}".format(
+ np.mean(power[power >= opt["threshold"]]) * 1e6,
+ np.mean(power[power >= opt["threshold"]]),
+ )
+ )
peaks = []
peak_start = -1
for i, dp in enumerate(power):
- if dp >= opt['threshold'] and peak_start == -1:
+ if dp >= opt["threshold"] and peak_start == -1:
peak_start = i
- elif dp < opt['threshold'] and peak_start != -1:
+ elif dp < opt["threshold"] and peak_start != -1:
peaks.append((peak_start, i))
peak_start = -1
total_energy = 0
delta_energy = 0
for peak in peaks:
- duration = data[peak[1]-1, 0] - data[peak[0], 0]
+ duration = data[peak[1] - 1, 0] - data[peak[0], 0]
total_energy += np.mean(power[peak[0] : peak[1]]) * duration
- delta_energy += (np.mean(power[peak[0] : peak[1]]) - baseline_mean) * duration
- print('{:.2f}ms peak ({:f} -> {:f})'.format(duration * 1000,
- data[peak[0], 0], data[peak[1]-1, 0]))
- print(' {:f} µJ / mean {:f} µW'.format(
- np.mean(power[peak[0] : peak[1]]) * duration * 1e6,
- np.mean(power[peak[0] : peak[1]]) * 1e6 ))
- print('Peak energy mean: {:.0f} µJ : {:.9f}'.format(
- total_energy * 1e6 / len(peaks), total_energy / len(peaks)))
- print('Average per-peak energy (delta over baseline): {:.0f} µJ : {:.9f}'.format(
- delta_energy * 1e6 / len(peaks), delta_energy / len(peaks)))
-
- power_from_energy = ((data[1:, 3] - data[:-1, 3]) * 1e-9) / ((data[1:, 0] - data[:-1, 0]) * 1e-6)
+ delta_energy += (
+ np.mean(power[peak[0] : peak[1]]) - baseline_mean
+ ) * duration
+ print(
+ "{:.2f}ms peak ({:f} -> {:f})".format(
+ duration * 1000, data[peak[0], 0], data[peak[1] - 1, 0]
+ )
+ )
+ print(
+ " {:f} µJ / mean {:f} µW".format(
+ np.mean(power[peak[0] : peak[1]]) * duration * 1e6,
+ np.mean(power[peak[0] : peak[1]]) * 1e6,
+ )
+ )
+ print(
+ "Peak energy mean: {:.0f} µJ : {:.9f}".format(
+ total_energy * 1e6 / len(peaks), total_energy / len(peaks)
+ )
+ )
+ print(
+ "Average per-peak energy (delta over baseline): {:.0f} µJ : {:.9f}".format(
+ delta_energy * 1e6 / len(peaks), delta_energy / len(peaks)
+ )
+ )
+
+ power_from_energy = ((data[1:, 3] - data[:-1, 3]) * 1e-9) / (
+ (data[1:, 0] - data[:-1, 0]) * 1e-6
+ )
mean_power = running_mean(power_from_energy, 10)
- if 'stat' in opt:
+ if "stat" in opt:
mean_voltage = np.mean(data[:, 2] * 1e-3)
mean_current = np.mean(data[:, 1] * 1e-9)
mean_power = np.mean(data[:, 1] * data[:, 2] * 1e-12)
- print('Mean voltage: {:.2f} V : {:.9f}'.format(mean_voltage, mean_voltage))
- print('Mean current: {:.0f} µA : {:.9f}'.format(mean_current * 1e6, mean_current))
- print('Mean power: {:.0f} µW : {:.9f}'.format(mean_power * 1e6, mean_power))
- print('Total energy: {:f} J : {:.9f}'.format(m_energy_nj * 1e-9, m_energy_nj * 1e-9))
-
- if 'plot' in opt:
+ print(
+ "Mean voltage: {:.2f} V : {:.9f}".format(mean_voltage, mean_voltage)
+ )
+ print(
+ "Mean current: {:.0f} µA : {:.9f}".format(
+ mean_current * 1e6, mean_current
+ )
+ )
+ print(
+ "Mean power: {:.0f} µW : {:.9f}".format(mean_power * 1e6, mean_power)
+ )
+ print(
+ "Total energy: {:f} J : {:.9f}".format(
+ m_energy_nj * 1e-9, m_energy_nj * 1e-9
+ )
+ )
+
+ if "plot" in opt:
# nA * mV = pW
- energyhandle, = plt.plot(data[1:, 0] * 1e-6, power_from_energy, 'b-', label='P=ΔE/Δt', markersize=1)
- meanhandle, = plt.plot(data[1:, 0] * 1e-6, mean_power, 'r-', label='mean(P, 10)', markersize=1)
+ (energyhandle,) = plt.plot(
+ data[1:, 0] * 1e-6, power_from_energy, "b-", label="P=ΔE/Δt", markersize=1
+ )
+ (meanhandle,) = plt.plot(
+ data[1:, 0] * 1e-6, mean_power, "r-", label="mean(P, 10)", markersize=1
+ )
plt.legend(handles=[energyhandle, meanhandle])
- plt.xlabel('Time [s]')
- plt.ylabel('Power [W]')
+ plt.xlabel("Time [s]")
+ plt.ylabel("Power [W]")
plt.grid(True)
- if 'load' in opt:
- plt.title(opt['load'])
+ if "load" in opt:
+ plt.title(opt["load"])
plt.show()
- if 'histogram' in opt:
- plt.hist((data[1:, 3] - data[:-1, 3]) * 1e-9, bins=int(opt['histogram']))
+ if "histogram" in opt:
+ plt.hist((data[1:, 3] - data[:-1, 3]) * 1e-9, bins=int(opt["histogram"]))
plt.show()