summaryrefslogtreecommitdiff
path: root/bin
diff options
context:
space:
mode:
authorDaniel Friesel <derf@finalrewind.org>2018-11-01 20:08:59 +0100
committerDaniel Friesel <derf@finalrewind.org>2018-11-01 20:08:59 +0100
commit90eeeaf798b267c42e50a1b7e9c98fe2e278dde4 (patch)
tree48dbb00c627efd0dd69b4d6420c10b9c9eae724a /bin
parent5785c4cea4eb1c4c5b42ed83b29a390e08060f30 (diff)
add threshold monitor option
Diffstat (limited to 'bin')
-rwxr-xr-xbin/msp430-etv28
1 files changed, 26 insertions, 2 deletions
diff --git a/bin/msp430-etv b/bin/msp430-etv
index b3eb2b6..5fe896f 100755
--- a/bin/msp430-etv
+++ b/bin/msp430-etv
@@ -26,7 +26,7 @@ def show_help():
USAGE
msp430-etv [--load <file> | <measurement duration>] [--save <file>]
- [--skip <count>] [--plot] [--stat]
+ [--skip <count>] [--threshold <power>] [--plot] [--stat]
DESCRIPTION
@@ -52,7 +52,7 @@ OPTIONS
if __name__ == '__main__':
try:
- optspec = ('help load= save= skip= plot stat')
+ optspec = ('help load= save= skip= threshold= plot stat')
raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(' '))
for option, parameter in raw_opts:
@@ -71,6 +71,9 @@ if __name__ == '__main__':
else:
opt['skip'] = 0
+ if 'threshold' in opt:
+ opt['threshold'] = float(opt['threshold'])
+
except getopt.GetoptError as err:
print(err)
sys.exit(2)
@@ -110,6 +113,27 @@ if __name__ == '__main__':
print('Calculated energy: U*I*t = {:f} J'.format(m_calc_energy))
print('Energy deviation: {:.1f}%'.format(m_energy_deviation * 100))
+
+ if 'threshold' in opt:
+ power = data[:, 1] * data[:, 2]
+
+ peaks = []
+ peak_start = -1
+ for i, dp in enumerate(power):
+ if dp >= opt['threshold'] and peak_start == -1:
+ peak_start = i
+ elif dp < opt['threshold'] and peak_start != -1:
+ peaks.append((peak_start, i))
+ peak_start = -1
+
+ for peak in peaks:
+ duration = data[peak[1]-1, 0] - data[peak[0], 0]
+ print('{:.2f}ms peak ({:f} -> {:f})'.format(duration * 1000,
+ data[peak[0], 0], data[peak[1]-1, 0]))
+ print(' {:f} µJ / mean {:f} µW'.format(
+ np.mean(power[peak[0] : peak[1]]) * duration * 1e6,
+ np.mean(power[peak[0] : peak[1]]) * 1e6 ))
+
if 'save' in opt:
with open(opt['save'], 'w') as f:
f.write(log_data)