summaryrefslogtreecommitdiff
path: root/bin
diff options
context:
space:
mode:
Diffstat (limited to 'bin')
-rwxr-xr-xbin/msp430-etv24
1 files changed, 22 insertions, 2 deletions
diff --git a/bin/msp430-etv b/bin/msp430-etv
index afe885f..4954304 100755
--- a/bin/msp430-etv
+++ b/bin/msp430-etv
@@ -15,6 +15,22 @@ import time
opt = dict()
+def running_mean(x: np.ndarray, N: int) -> np.ndarray:
+ """
+ Compute `N` elements wide running average over `x`.
+
+ :param x: 1-Dimensional NumPy array
+ :param N: how many items to average. Should be even for optimal results.
+ """
+
+ # to ensure that output.shape == input.shape, we need to insert data
+ # at the boundaries
+ boundary_array = np.insert(x, 0, np.full((N // 2), x[0]))
+ boundary_array = np.append(boundary_array, np.full((N // 2 + N % 2), x[-1]))
+ print(boundary_array)
+ cumsum = np.cumsum(boundary_array)
+ return (cumsum[N:] - cumsum[:-N]) / N
+
def measure_data(filename, duration):
# libmsp430.so must be available
if not 'LD_LIBRARY_PATH' in os.environ:
@@ -274,6 +290,9 @@ if __name__ == '__main__':
print('Average per-peak energy (delta over baseline): {:.0f} µJ : {:.9f}'.format(
delta_energy * 1e6 / len(peaks), delta_energy / len(peaks)))
+ power_from_current = data[:, 1] * data[:, 2] * 1e-12
+ power_from_energy = ((data[1:, 3] - data[:-1, 3]) * 1e-9) / ((data[1:, 0] - data[:-1, 0]) * 1e-6)
+ mean_power = running_mean(power_from_energy, 10)
if 'stat' in opt:
mean_voltage = np.mean(data[:, 2])
@@ -286,8 +305,9 @@ if __name__ == '__main__':
if 'plot' in opt:
# nA * mV = pW
- pwrhandle, = plt.plot(data[:, 0] * 1e-6, data[:, 1] * data[:, 2] * 1e-12, 'b-', label='P=U*I', markersize=1)
- energyhandle, = plt.plot(data[1:, 0] * 1e-6, ((data[1:, 3] - data[:-1, 3]) * 1e-9) / ((data[1:, 0] - data[:-1, 0]) * 1e-6), 'r-', label='P=ΔE/Δt', markersize=1)
+ pwrhandle, = plt.plot(data[:, 0] * 1e-6, power_from_current, 'b-', label='P=U*I', markersize=1)
+ energyhandle, = plt.plot(data[1:, 0] * 1e-6, power_from_energy, 'r-', label='P=ΔE/Δt', markersize=1)
+ energyhandle2, = plt.plot(data[1:, 0] * 1e-6, mean_power, 'y-', label='E/Δt', markersize=1)
plt.legend(handles=[pwrhandle, energyhandle])
plt.xlabel('Time [s]')
plt.ylabel('Power [W]')