diff options
Diffstat (limited to 'src')
-rw-r--r-- | src/lib/inflate.cc | 104 |
1 files changed, 60 insertions, 44 deletions
diff --git a/src/lib/inflate.cc b/src/lib/inflate.cc index 8e83453..e79c4fb 100644 --- a/src/lib/inflate.cc +++ b/src/lib/inflate.cc @@ -88,36 +88,33 @@ uint8_t deflate_hc_lengths[19]; /* * Code lengths of the literal/length and distance alphabets. + * up to 286 literal/length codes + up to 32 distance codes. */ uint8_t deflate_lld_lengths[318]; /* - * Assumptions: - * * huffman code length is limited to 11 bits - * * there are no more than 255 huffman codes with the same length - * - * Rationale: longer huffman codes might appear when handling large data - * sets. We don't do that; instead, we expect the uncompressed source to - * be no more than a few kB of data. - */ - -/* * Bit length counts and next code entries for Literal/Length alphabet. * Combined with the code lengths in deflate_lld_lengths, these make up the * Literal/Length alphabet. See the algorithm in RFC 1951 section 3.2.2 for * details. * - * In deflate, these variables are also used for the huffman alphabet in - * dynamic huffman blocks. + * Assumption: There are no more than 255 huffman codes with the same length. + * As the largest alphabet (the literal/length alphabet) contains just 288 + * codes in total, this should be reasonable. + * + * These variables are also used for the huffman alphabet in dynamic huffman + * blocks. */ -uint8_t deflate_bl_count_ll[12]; -uint16_t deflate_next_code_ll[12]; +uint8_t deflate_bl_count_ll[16]; +uint16_t deflate_next_code_ll[16]; /* - * Bit length counts and next code entries for Distance alphabet. + * Bit length counts and next code entries for Distance alphabet. Note that, + * even though there are just 30 different distance codes, individual + * codes may be up to 16 bits long. */ -uint8_t deflate_bl_count_d[12]; -uint16_t deflate_next_code_d[12]; +uint8_t deflate_bl_count_d[16]; +uint16_t deflate_next_code_d[16]; static uint16_t deflate_rev_word(uint16_t word, uint8_t bits) { @@ -132,7 +129,7 @@ static uint16_t deflate_rev_word(uint16_t word, uint8_t bits) return ret; } -static uint8_t deflate_bitmask(uint8_t bit_count) +static uint16_t deflate_bitmask(uint8_t bit_count) { return (1 << bit_count) - 1; } @@ -168,7 +165,7 @@ static void deflate_build_alphabet(uint8_t * lengths, uint16_t size, uint16_t i; uint16_t code = 0; uint16_t max_len = 0; - for (i = 0; i < 12; i++) { + for (i = 0; i < 16; i++) { bl_count[i] = 0; } @@ -187,11 +184,17 @@ static void deflate_build_alphabet(uint8_t * lengths, uint16_t size, } } +/* + * This function trades speed for low memory requirements. Instead of building + * an actual huffman tree (at a cost of about 650 Bytes of RAM), we iterate + * through the code lengths whenever we have found a huffman code. This is + * very slow, but memory-efficient. + */ static uint16_t deflate_huff(uint8_t * lengths, uint16_t size, uint8_t * bl_count, uint16_t * next_code) { uint16_t next_word = deflate_get_word(); - for (uint8_t num_bits = 1; num_bits < 12; num_bits++) { + for (uint8_t num_bits = 1; num_bits < 16; num_bits++) { uint16_t next_bits = deflate_rev_word(next_word, num_bits); if (bl_count[num_bits] && next_bits >= next_code[num_bits] && next_bits < next_code[num_bits] + bl_count[num_bits]) { @@ -202,6 +205,7 @@ static uint16_t deflate_huff(uint8_t * lengths, uint16_t size, } uint8_t len_pos = next_bits; uint8_t cur_pos = next_code[num_bits]; + // This is slow, but memory-efficient for (uint16_t i = 0; i < size; i++) { if (lengths[i] == num_bits) { if (cur_pos == len_pos) { @@ -232,6 +236,8 @@ static int8_t deflate_huffman(uint8_t * ll_lengths, uint16_t ll_size, deflate_output_now++; } else if (code == 256) { return 0; + } else if (code == 65535) { + return DEFLATE_ERR_HUFFMAN; } else { uint16_t len_val = deflate_length_offsets[code - 257]; uint8_t extra_bits = deflate_length_bits[code - 257]; @@ -264,7 +270,10 @@ static int8_t deflate_huffman(uint8_t * ll_lengths, uint16_t ll_size, static int8_t deflate_uncompressed() { - deflate_input_now++; + if (deflate_bit_offset) { + deflate_input_now++; + deflate_bit_offset = 0; + } uint16_t len = ((uint16_t) deflate_input_now[1] << 8) + deflate_input_now[0]; uint16_t nlen = @@ -334,7 +343,8 @@ static int8_t deflate_dynamic_huffman() uint16_t items_processed = 0; while (items_processed < hlit + hdist) { uint8_t code = - deflate_huff(deflate_hc_lengths, 19, deflate_bl_count_ll, + deflate_huff(deflate_hc_lengths, sizeof(deflate_hc_lengths), + deflate_bl_count_ll, deflate_next_code_ll); if (code == 16) { uint8_t copy_count = 3 + deflate_get_bits(2); @@ -373,36 +383,42 @@ static int8_t deflate_dynamic_huffman() int16_t inflate(unsigned char *input_buf, uint16_t input_len, unsigned char *output_buf, uint16_t output_len) { - //uint8_t is_final = input_buf[0] & 0x01; - uint8_t block_type = (input_buf[0] & 0x06) >> 1; - int8_t ret; - deflate_input_now = input_buf; deflate_input_end = input_buf + input_len; - deflate_bit_offset = 3; + deflate_bit_offset = 0; deflate_output_now = output_buf; deflate_output_end = output_buf + output_len; - switch (block_type) { - case 0: - ret = deflate_uncompressed(); - break; - case 1: - ret = deflate_static_huffman(); - break; - case 2: - ret = deflate_dynamic_huffman(); - break; - default: - return DEFLATE_ERR_BLOCK; - } + while (1) { + uint8_t block_type = deflate_get_bits(3); + uint8_t is_final = block_type & 0x01; + int8_t ret; + + block_type >>= 1; + + switch (block_type) { + case 0: + ret = deflate_uncompressed(); + break; + case 1: + ret = deflate_static_huffman(); + break; + case 2: + ret = deflate_dynamic_huffman(); + break; + default: + return DEFLATE_ERR_BLOCK; + } - if (ret < 0) { - return ret; - } + if (ret < 0) { + return ret; + } - return deflate_output_now - output_buf; + if (is_final) { + return deflate_output_now - output_buf; + } + } } int16_t inflate_zlib(unsigned char *input_buf, uint16_t input_len, |