summaryrefslogtreecommitdiff
path: root/include/lib/modernjson/detail/input/lexer.hpp
blob: 960621147f74cbdfeab77c2d9c88adfb4910a26b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
#pragma once

#include <clocale> // localeconv
#include <cstddef> // size_t
#include <cstdlib> // strtof, strtod, strtold, strtoll, strtoull
#include <cstdio> // snprintf
#include <initializer_list> // initializer_list
#include <string> // char_traits, string
#include <vector> // vector

#include <lib/modernjson/detail/macro_scope.hpp>
#include <lib/modernjson/detail/input/input_adapters.hpp>

namespace nlohmann
{
namespace detail
{
///////////
// lexer //
///////////

/*!
@brief lexical analysis

This class organizes the lexical analysis during JSON deserialization.
*/
template<typename BasicJsonType>
class lexer
{
    using number_integer_t = typename BasicJsonType::number_integer_t;
    using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
    using number_float_t = typename BasicJsonType::number_float_t;
    using string_t = typename BasicJsonType::string_t;

  public:
    /// token types for the parser
    enum class token_type
    {
        uninitialized,    ///< indicating the scanner is uninitialized
        literal_true,     ///< the `true` literal
        literal_false,    ///< the `false` literal
        literal_null,     ///< the `null` literal
        value_string,     ///< a string -- use get_string() for actual value
        value_unsigned,   ///< an unsigned integer -- use get_number_unsigned() for actual value
        value_integer,    ///< a signed integer -- use get_number_integer() for actual value
        value_float,      ///< an floating point number -- use get_number_float() for actual value
        begin_array,      ///< the character for array begin `[`
        begin_object,     ///< the character for object begin `{`
        end_array,        ///< the character for array end `]`
        end_object,       ///< the character for object end `}`
        name_separator,   ///< the name separator `:`
        value_separator,  ///< the value separator `,`
        parse_error,      ///< indicating a parse error
        end_of_input,     ///< indicating the end of the input buffer
        literal_or_value  ///< a literal or the begin of a value (only for diagnostics)
    };

    /// return name of values of type token_type (only used for errors)
    static const char* token_type_name(const token_type t) noexcept
    {
        switch (t)
        {
            case token_type::uninitialized:
                return "<uninitialized>";
            case token_type::literal_true:
                return "true literal";
            case token_type::literal_false:
                return "false literal";
            case token_type::literal_null:
                return "null literal";
            case token_type::value_string:
                return "string literal";
            case lexer::token_type::value_unsigned:
            case lexer::token_type::value_integer:
            case lexer::token_type::value_float:
                return "number literal";
            case token_type::begin_array:
                return "'['";
            case token_type::begin_object:
                return "'{'";
            case token_type::end_array:
                return "']'";
            case token_type::end_object:
                return "'}'";
            case token_type::name_separator:
                return "':'";
            case token_type::value_separator:
                return "','";
            case token_type::parse_error:
                return "<parse error>";
            case token_type::end_of_input:
                return "end of input";
            case token_type::literal_or_value:
                return "'[', '{', or a literal";
            // LCOV_EXCL_START
            default: // catch non-enum values
                return "unknown token";
                // LCOV_EXCL_STOP
        }
    }

    explicit lexer(detail::input_adapter_t&& adapter)
        : ia(std::move(adapter)), decimal_point_char(get_decimal_point()) {}

    // delete because of pointer members
    lexer(const lexer&) = delete;
    lexer& operator=(lexer&) = delete;

  private:
    /////////////////////
    // locales
    /////////////////////

    /// return the locale-dependent decimal point
    static char get_decimal_point() noexcept
    {
        const auto loc = localeconv();
        assert(loc != nullptr);
        return (loc->decimal_point == nullptr) ? '.' : *(loc->decimal_point);
    }

    /////////////////////
    // scan functions
    /////////////////////

    /*!
    @brief get codepoint from 4 hex characters following `\u`

    For input "\u c1 c2 c3 c4" the codepoint is:
      (c1 * 0x1000) + (c2 * 0x0100) + (c3 * 0x0010) + c4
    = (c1 << 12) + (c2 << 8) + (c3 << 4) + (c4 << 0)

    Furthermore, the possible characters '0'..'9', 'A'..'F', and 'a'..'f'
    must be converted to the integers 0x0..0x9, 0xA..0xF, 0xA..0xF, resp. The
    conversion is done by subtracting the offset (0x30, 0x37, and 0x57)
    between the ASCII value of the character and the desired integer value.

    @return codepoint (0x0000..0xFFFF) or -1 in case of an error (e.g. EOF or
            non-hex character)
    */
    int get_codepoint()
    {
        // this function only makes sense after reading `\u`
        assert(current == 'u');
        int codepoint = 0;

        const auto factors = { 12, 8, 4, 0 };
        for (const auto factor : factors)
        {
            get();

            if (current >= '0' and current <= '9')
            {
                codepoint += ((current - 0x30) << factor);
            }
            else if (current >= 'A' and current <= 'F')
            {
                codepoint += ((current - 0x37) << factor);
            }
            else if (current >= 'a' and current <= 'f')
            {
                codepoint += ((current - 0x57) << factor);
            }
            else
            {
                return -1;
            }
        }

        assert(0x0000 <= codepoint and codepoint <= 0xFFFF);
        return codepoint;
    }

    /*!
    @brief check if the next byte(s) are inside a given range

    Adds the current byte and, for each passed range, reads a new byte and
    checks if it is inside the range. If a violation was detected, set up an
    error message and return false. Otherwise, return true.

    @param[in] ranges  list of integers; interpreted as list of pairs of
                       inclusive lower and upper bound, respectively

    @pre The passed list @a ranges must have 2, 4, or 6 elements; that is,
         1, 2, or 3 pairs. This precondition is enforced by an assertion.

    @return true if and only if no range violation was detected
    */
    bool next_byte_in_range(std::initializer_list<int> ranges)
    {
        assert(ranges.size() == 2 or ranges.size() == 4 or ranges.size() == 6);
        add(current);

        for (auto range = ranges.begin(); range != ranges.end(); ++range)
        {
            get();
            if (JSON_LIKELY(*range <= current and current <= *(++range)))
            {
                add(current);
            }
            else
            {
                error_message = "invalid string: ill-formed UTF-8 byte";
                return false;
            }
        }

        return true;
    }

    /*!
    @brief scan a string literal

    This function scans a string according to Sect. 7 of RFC 7159. While
    scanning, bytes are escaped and copied into buffer token_buffer. Then the
    function returns successfully, token_buffer is *not* null-terminated (as it
    may contain \0 bytes), and token_buffer.size() is the number of bytes in the
    string.

    @return token_type::value_string if string could be successfully scanned,
            token_type::parse_error otherwise

    @note In case of errors, variable error_message contains a textual
          description.
    */
    token_type scan_string()
    {
        // reset token_buffer (ignore opening quote)
        reset();

        // we entered the function by reading an open quote
        assert(current == '\"');

        while (true)
        {
            // get next character
            switch (get())
            {
                // end of file while parsing string
                case std::char_traits<char>::eof():
                {
                    error_message = "invalid string: missing closing quote";
                    return token_type::parse_error;
                }

                // closing quote
                case '\"':
                {
                    return token_type::value_string;
                }

                // escapes
                case '\\':
                {
                    switch (get())
                    {
                        // quotation mark
                        case '\"':
                            add('\"');
                            break;
                        // reverse solidus
                        case '\\':
                            add('\\');
                            break;
                        // solidus
                        case '/':
                            add('/');
                            break;
                        // backspace
                        case 'b':
                            add('\b');
                            break;
                        // form feed
                        case 'f':
                            add('\f');
                            break;
                        // line feed
                        case 'n':
                            add('\n');
                            break;
                        // carriage return
                        case 'r':
                            add('\r');
                            break;
                        // tab
                        case 't':
                            add('\t');
                            break;

                        // unicode escapes
                        case 'u':
                        {
                            const int codepoint1 = get_codepoint();
                            int codepoint = codepoint1; // start with codepoint1

                            if (JSON_UNLIKELY(codepoint1 == -1))
                            {
                                error_message = "invalid string: '\\u' must be followed by 4 hex digits";
                                return token_type::parse_error;
                            }

                            // check if code point is a high surrogate
                            if (0xD800 <= codepoint1 and codepoint1 <= 0xDBFF)
                            {
                                // expect next \uxxxx entry
                                if (JSON_LIKELY(get() == '\\' and get() == 'u'))
                                {
                                    const int codepoint2 = get_codepoint();

                                    if (JSON_UNLIKELY(codepoint2 == -1))
                                    {
                                        error_message = "invalid string: '\\u' must be followed by 4 hex digits";
                                        return token_type::parse_error;
                                    }

                                    // check if codepoint2 is a low surrogate
                                    if (JSON_LIKELY(0xDC00 <= codepoint2 and codepoint2 <= 0xDFFF))
                                    {
                                        // overwrite codepoint
                                        codepoint =
                                            // high surrogate occupies the most significant 22 bits
                                            (codepoint1 << 10)
                                            // low surrogate occupies the least significant 15 bits
                                            + codepoint2
                                            // there is still the 0xD800, 0xDC00 and 0x10000 noise
                                            // in the result so we have to subtract with:
                                            // (0xD800 << 10) + DC00 - 0x10000 = 0x35FDC00
                                            - 0x35FDC00;
                                    }
                                    else
                                    {
                                        error_message = "invalid string: surrogate U+DC00..U+DFFF must be followed by U+DC00..U+DFFF";
                                        return token_type::parse_error;
                                    }
                                }
                                else
                                {
                                    error_message = "invalid string: surrogate U+DC00..U+DFFF must be followed by U+DC00..U+DFFF";
                                    return token_type::parse_error;
                                }
                            }
                            else
                            {
                                if (JSON_UNLIKELY(0xDC00 <= codepoint1 and codepoint1 <= 0xDFFF))
                                {
                                    error_message = "invalid string: surrogate U+DC00..U+DFFF must follow U+D800..U+DBFF";
                                    return token_type::parse_error;
                                }
                            }

                            // result of the above calculation yields a proper codepoint
                            assert(0x00 <= codepoint and codepoint <= 0x10FFFF);

                            // translate codepoint into bytes
                            if (codepoint < 0x80)
                            {
                                // 1-byte characters: 0xxxxxxx (ASCII)
                                add(codepoint);
                            }
                            else if (codepoint <= 0x7FF)
                            {
                                // 2-byte characters: 110xxxxx 10xxxxxx
                                add(0xC0 | (codepoint >> 6));
                                add(0x80 | (codepoint & 0x3F));
                            }
                            else if (codepoint <= 0xFFFF)
                            {
                                // 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
                                add(0xE0 | (codepoint >> 12));
                                add(0x80 | ((codepoint >> 6) & 0x3F));
                                add(0x80 | (codepoint & 0x3F));
                            }
                            else
                            {
                                // 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
                                add(0xF0 | (codepoint >> 18));
                                add(0x80 | ((codepoint >> 12) & 0x3F));
                                add(0x80 | ((codepoint >> 6) & 0x3F));
                                add(0x80 | (codepoint & 0x3F));
                            }

                            break;
                        }

                        // other characters after escape
                        default:
                            error_message = "invalid string: forbidden character after backslash";
                            return token_type::parse_error;
                    }

                    break;
                }

                // invalid control characters
                case 0x00:
                case 0x01:
                case 0x02:
                case 0x03:
                case 0x04:
                case 0x05:
                case 0x06:
                case 0x07:
                case 0x08:
                case 0x09:
                case 0x0A:
                case 0x0B:
                case 0x0C:
                case 0x0D:
                case 0x0E:
                case 0x0F:
                case 0x10:
                case 0x11:
                case 0x12:
                case 0x13:
                case 0x14:
                case 0x15:
                case 0x16:
                case 0x17:
                case 0x18:
                case 0x19:
                case 0x1A:
                case 0x1B:
                case 0x1C:
                case 0x1D:
                case 0x1E:
                case 0x1F:
                {
                    error_message = "invalid string: control character must be escaped";
                    return token_type::parse_error;
                }

                // U+0020..U+007F (except U+0022 (quote) and U+005C (backspace))
                case 0x20:
                case 0x21:
                case 0x23:
                case 0x24:
                case 0x25:
                case 0x26:
                case 0x27:
                case 0x28:
                case 0x29:
                case 0x2A:
                case 0x2B:
                case 0x2C:
                case 0x2D:
                case 0x2E:
                case 0x2F:
                case 0x30:
                case 0x31:
                case 0x32:
                case 0x33:
                case 0x34:
                case 0x35:
                case 0x36:
                case 0x37:
                case 0x38:
                case 0x39:
                case 0x3A:
                case 0x3B:
                case 0x3C:
                case 0x3D:
                case 0x3E:
                case 0x3F:
                case 0x40:
                case 0x41:
                case 0x42:
                case 0x43:
                case 0x44:
                case 0x45:
                case 0x46:
                case 0x47:
                case 0x48:
                case 0x49:
                case 0x4A:
                case 0x4B:
                case 0x4C:
                case 0x4D:
                case 0x4E:
                case 0x4F:
                case 0x50:
                case 0x51:
                case 0x52:
                case 0x53:
                case 0x54:
                case 0x55:
                case 0x56:
                case 0x57:
                case 0x58:
                case 0x59:
                case 0x5A:
                case 0x5B:
                case 0x5D:
                case 0x5E:
                case 0x5F:
                case 0x60:
                case 0x61:
                case 0x62:
                case 0x63:
                case 0x64:
                case 0x65:
                case 0x66:
                case 0x67:
                case 0x68:
                case 0x69:
                case 0x6A:
                case 0x6B:
                case 0x6C:
                case 0x6D:
                case 0x6E:
                case 0x6F:
                case 0x70:
                case 0x71:
                case 0x72:
                case 0x73:
                case 0x74:
                case 0x75:
                case 0x76:
                case 0x77:
                case 0x78:
                case 0x79:
                case 0x7A:
                case 0x7B:
                case 0x7C:
                case 0x7D:
                case 0x7E:
                case 0x7F:
                {
                    add(current);
                    break;
                }

                // U+0080..U+07FF: bytes C2..DF 80..BF
                case 0xC2:
                case 0xC3:
                case 0xC4:
                case 0xC5:
                case 0xC6:
                case 0xC7:
                case 0xC8:
                case 0xC9:
                case 0xCA:
                case 0xCB:
                case 0xCC:
                case 0xCD:
                case 0xCE:
                case 0xCF:
                case 0xD0:
                case 0xD1:
                case 0xD2:
                case 0xD3:
                case 0xD4:
                case 0xD5:
                case 0xD6:
                case 0xD7:
                case 0xD8:
                case 0xD9:
                case 0xDA:
                case 0xDB:
                case 0xDC:
                case 0xDD:
                case 0xDE:
                case 0xDF:
                {
                    if (JSON_UNLIKELY(not next_byte_in_range({0x80, 0xBF})))
                    {
                        return token_type::parse_error;
                    }
                    break;
                }

                // U+0800..U+0FFF: bytes E0 A0..BF 80..BF
                case 0xE0:
                {
                    if (JSON_UNLIKELY(not (next_byte_in_range({0xA0, 0xBF, 0x80, 0xBF}))))
                    {
                        return token_type::parse_error;
                    }
                    break;
                }

                // U+1000..U+CFFF: bytes E1..EC 80..BF 80..BF
                // U+E000..U+FFFF: bytes EE..EF 80..BF 80..BF
                case 0xE1:
                case 0xE2:
                case 0xE3:
                case 0xE4:
                case 0xE5:
                case 0xE6:
                case 0xE7:
                case 0xE8:
                case 0xE9:
                case 0xEA:
                case 0xEB:
                case 0xEC:
                case 0xEE:
                case 0xEF:
                {
                    if (JSON_UNLIKELY(not (next_byte_in_range({0x80, 0xBF, 0x80, 0xBF}))))
                    {
                        return token_type::parse_error;
                    }
                    break;
                }

                // U+D000..U+D7FF: bytes ED 80..9F 80..BF
                case 0xED:
                {
                    if (JSON_UNLIKELY(not (next_byte_in_range({0x80, 0x9F, 0x80, 0xBF}))))
                    {
                        return token_type::parse_error;
                    }
                    break;
                }

                // U+10000..U+3FFFF F0 90..BF 80..BF 80..BF
                case 0xF0:
                {
                    if (JSON_UNLIKELY(not (next_byte_in_range({0x90, 0xBF, 0x80, 0xBF, 0x80, 0xBF}))))
                    {
                        return token_type::parse_error;
                    }
                    break;
                }

                // U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
                case 0xF1:
                case 0xF2:
                case 0xF3:
                {
                    if (JSON_UNLIKELY(not (next_byte_in_range({0x80, 0xBF, 0x80, 0xBF, 0x80, 0xBF}))))
                    {
                        return token_type::parse_error;
                    }
                    break;
                }

                // U+100000..U+10FFFF F4 80..8F 80..BF 80..BF
                case 0xF4:
                {
                    if (JSON_UNLIKELY(not (next_byte_in_range({0x80, 0x8F, 0x80, 0xBF, 0x80, 0xBF}))))
                    {
                        return token_type::parse_error;
                    }
                    break;
                }

                // remaining bytes (80..C1 and F5..FF) are ill-formed
                default:
                {
                    error_message = "invalid string: ill-formed UTF-8 byte";
                    return token_type::parse_error;
                }
            }
        }
    }

    static void strtof(float& f, const char* str, char** endptr) noexcept
    {
        f = std::strtof(str, endptr);
    }

    static void strtof(double& f, const char* str, char** endptr) noexcept
    {
        f = std::strtod(str, endptr);
    }

    static void strtof(long double& f, const char* str, char** endptr) noexcept
    {
        f = std::strtold(str, endptr);
    }

    /*!
    @brief scan a number literal

    This function scans a string according to Sect. 6 of RFC 7159.

    The function is realized with a deterministic finite state machine derived
    from the grammar described in RFC 7159. Starting in state "init", the
    input is read and used to determined the next state. Only state "done"
    accepts the number. State "error" is a trap state to model errors. In the
    table below, "anything" means any character but the ones listed before.

    state    | 0        | 1-9      | e E      | +       | -       | .        | anything
    ---------|----------|----------|----------|---------|---------|----------|-----------
    init     | zero     | any1     | [error]  | [error] | minus   | [error]  | [error]
    minus    | zero     | any1     | [error]  | [error] | [error] | [error]  | [error]
    zero     | done     | done     | exponent | done    | done    | decimal1 | done
    any1     | any1     | any1     | exponent | done    | done    | decimal1 | done
    decimal1 | decimal2 | [error]  | [error]  | [error] | [error] | [error]  | [error]
    decimal2 | decimal2 | decimal2 | exponent | done    | done    | done     | done
    exponent | any2     | any2     | [error]  | sign    | sign    | [error]  | [error]
    sign     | any2     | any2     | [error]  | [error] | [error] | [error]  | [error]
    any2     | any2     | any2     | done     | done    | done    | done     | done

    The state machine is realized with one label per state (prefixed with
    "scan_number_") and `goto` statements between them. The state machine
    contains cycles, but any cycle can be left when EOF is read. Therefore,
    the function is guaranteed to terminate.

    During scanning, the read bytes are stored in token_buffer. This string is
    then converted to a signed integer, an unsigned integer, or a
    floating-point number.

    @return token_type::value_unsigned, token_type::value_integer, or
            token_type::value_float if number could be successfully scanned,
            token_type::parse_error otherwise

    @note The scanner is independent of the current locale. Internally, the
          locale's decimal point is used instead of `.` to work with the
          locale-dependent converters.
    */
    token_type scan_number()
    {
        // reset token_buffer to store the number's bytes
        reset();

        // the type of the parsed number; initially set to unsigned; will be
        // changed if minus sign, decimal point or exponent is read
        token_type number_type = token_type::value_unsigned;

        // state (init): we just found out we need to scan a number
        switch (current)
        {
            case '-':
            {
                add(current);
                goto scan_number_minus;
            }

            case '0':
            {
                add(current);
                goto scan_number_zero;
            }

            case '1':
            case '2':
            case '3':
            case '4':
            case '5':
            case '6':
            case '7':
            case '8':
            case '9':
            {
                add(current);
                goto scan_number_any1;
            }

            // LCOV_EXCL_START
            default:
            {
                // all other characters are rejected outside scan_number()
                assert(false);
            }
                // LCOV_EXCL_STOP
        }

scan_number_minus:
        // state: we just parsed a leading minus sign
        number_type = token_type::value_integer;
        switch (get())
        {
            case '0':
            {
                add(current);
                goto scan_number_zero;
            }

            case '1':
            case '2':
            case '3':
            case '4':
            case '5':
            case '6':
            case '7':
            case '8':
            case '9':
            {
                add(current);
                goto scan_number_any1;
            }

            default:
            {
                error_message = "invalid number; expected digit after '-'";
                return token_type::parse_error;
            }
        }

scan_number_zero:
        // state: we just parse a zero (maybe with a leading minus sign)
        switch (get())
        {
            case '.':
            {
                add(decimal_point_char);
                goto scan_number_decimal1;
            }

            case 'e':
            case 'E':
            {
                add(current);
                goto scan_number_exponent;
            }

            default:
                goto scan_number_done;
        }

scan_number_any1:
        // state: we just parsed a number 0-9 (maybe with a leading minus sign)
        switch (get())
        {
            case '0':
            case '1':
            case '2':
            case '3':
            case '4':
            case '5':
            case '6':
            case '7':
            case '8':
            case '9':
            {
                add(current);
                goto scan_number_any1;
            }

            case '.':
            {
                add(decimal_point_char);
                goto scan_number_decimal1;
            }

            case 'e':
            case 'E':
            {
                add(current);
                goto scan_number_exponent;
            }

            default:
                goto scan_number_done;
        }

scan_number_decimal1:
        // state: we just parsed a decimal point
        number_type = token_type::value_float;
        switch (get())
        {
            case '0':
            case '1':
            case '2':
            case '3':
            case '4':
            case '5':
            case '6':
            case '7':
            case '8':
            case '9':
            {
                add(current);
                goto scan_number_decimal2;
            }

            default:
            {
                error_message = "invalid number; expected digit after '.'";
                return token_type::parse_error;
            }
        }

scan_number_decimal2:
        // we just parsed at least one number after a decimal point
        switch (get())
        {
            case '0':
            case '1':
            case '2':
            case '3':
            case '4':
            case '5':
            case '6':
            case '7':
            case '8':
            case '9':
            {
                add(current);
                goto scan_number_decimal2;
            }

            case 'e':
            case 'E':
            {
                add(current);
                goto scan_number_exponent;
            }

            default:
                goto scan_number_done;
        }

scan_number_exponent:
        // we just parsed an exponent
        number_type = token_type::value_float;
        switch (get())
        {
            case '+':
            case '-':
            {
                add(current);
                goto scan_number_sign;
            }

            case '0':
            case '1':
            case '2':
            case '3':
            case '4':
            case '5':
            case '6':
            case '7':
            case '8':
            case '9':
            {
                add(current);
                goto scan_number_any2;
            }

            default:
            {
                error_message =
                    "invalid number; expected '+', '-', or digit after exponent";
                return token_type::parse_error;
            }
        }

scan_number_sign:
        // we just parsed an exponent sign
        switch (get())
        {
            case '0':
            case '1':
            case '2':
            case '3':
            case '4':
            case '5':
            case '6':
            case '7':
            case '8':
            case '9':
            {
                add(current);
                goto scan_number_any2;
            }

            default:
            {
                error_message = "invalid number; expected digit after exponent sign";
                return token_type::parse_error;
            }
        }

scan_number_any2:
        // we just parsed a number after the exponent or exponent sign
        switch (get())
        {
            case '0':
            case '1':
            case '2':
            case '3':
            case '4':
            case '5':
            case '6':
            case '7':
            case '8':
            case '9':
            {
                add(current);
                goto scan_number_any2;
            }

            default:
                goto scan_number_done;
        }

scan_number_done:
        // unget the character after the number (we only read it to know that
        // we are done scanning a number)
        unget();

        char* endptr = nullptr;
        errno = 0;

        // try to parse integers first and fall back to floats
        if (number_type == token_type::value_unsigned)
        {
            const auto x = std::strtoull(token_buffer.data(), &endptr, 10);

            // we checked the number format before
            assert(endptr == token_buffer.data() + token_buffer.size());

            if (errno == 0)
            {
                value_unsigned = static_cast<number_unsigned_t>(x);
                if (value_unsigned == x)
                {
                    return token_type::value_unsigned;
                }
            }
        }
        else if (number_type == token_type::value_integer)
        {
            const auto x = std::strtoll(token_buffer.data(), &endptr, 10);

            // we checked the number format before
            assert(endptr == token_buffer.data() + token_buffer.size());

            if (errno == 0)
            {
                value_integer = static_cast<number_integer_t>(x);
                if (value_integer == x)
                {
                    return token_type::value_integer;
                }
            }
        }

        // this code is reached if we parse a floating-point number or if an
        // integer conversion above failed
        strtof(value_float, token_buffer.data(), &endptr);

        // we checked the number format before
        assert(endptr == token_buffer.data() + token_buffer.size());

        return token_type::value_float;
    }

    /*!
    @param[in] literal_text  the literal text to expect
    @param[in] length        the length of the passed literal text
    @param[in] return_type   the token type to return on success
    */
    token_type scan_literal(const char* literal_text, const std::size_t length,
                            token_type return_type)
    {
        assert(current == literal_text[0]);
        for (std::size_t i = 1; i < length; ++i)
        {
            if (JSON_UNLIKELY(get() != literal_text[i]))
            {
                error_message = "invalid literal";
                return token_type::parse_error;
            }
        }
        return return_type;
    }

    /////////////////////
    // input management
    /////////////////////

    /// reset token_buffer; current character is beginning of token
    void reset() noexcept
    {
        token_buffer.clear();
        token_string.clear();
        token_string.push_back(std::char_traits<char>::to_char_type(current));
    }

    /*
    @brief get next character from the input

    This function provides the interface to the used input adapter. It does
    not throw in case the input reached EOF, but returns a
    `std::char_traits<char>::eof()` in that case.  Stores the scanned characters
    for use in error messages.

    @return character read from the input
    */
    std::char_traits<char>::int_type get()
    {
        ++chars_read;
        if (next_unget)
        {
            // just reset the next_unget variable and work with current
            next_unget = false;
        }
        else
        {
            current = ia->get_character();
        }

        if (JSON_LIKELY(current != std::char_traits<char>::eof()))
        {
            token_string.push_back(std::char_traits<char>::to_char_type(current));
        }
        return current;
    }

    /*!
    @brief unget current character (read it again on next get)

    We implement unget by setting variable next_unget to true. The input is not
    changed - we just simulate ungetting by modifying chars_read and
    token_string. The next call to get() will behave as if the unget character
    is read again.
    */
    void unget()
    {
        next_unget = true;
        --chars_read;
        if (JSON_LIKELY(current != std::char_traits<char>::eof()))
        {
            assert(token_string.size() != 0);
            token_string.pop_back();
        }
    }

    /// add a character to token_buffer
    void add(int c)
    {
        token_buffer.push_back(std::char_traits<char>::to_char_type(c));
    }

  public:
    /////////////////////
    // value getters
    /////////////////////

    /// return integer value
    constexpr number_integer_t get_number_integer() const noexcept
    {
        return value_integer;
    }

    /// return unsigned integer value
    constexpr number_unsigned_t get_number_unsigned() const noexcept
    {
        return value_unsigned;
    }

    /// return floating-point value
    constexpr number_float_t get_number_float() const noexcept
    {
        return value_float;
    }

    /// return current string value (implicitly resets the token; useful only once)
    string_t& get_string()
    {
        return token_buffer;
    }

    /////////////////////
    // diagnostics
    /////////////////////

    /// return position of last read token
    constexpr std::size_t get_position() const noexcept
    {
        return chars_read;
    }

    /// return the last read token (for errors only).  Will never contain EOF
    /// (an arbitrary value that is not a valid char value, often -1), because
    /// 255 may legitimately occur.  May contain NUL, which should be escaped.
    std::string get_token_string() const
    {
        // escape control characters
        std::string result;
        for (const auto c : token_string)
        {
            if ('\x00' <= c and c <= '\x1F')
            {
                // escape control characters
                char cs[9];
                snprintf(cs, 9, "<U+%.4X>", static_cast<unsigned char>(c));
                result += cs;
            }
            else
            {
                // add character as is
                result.push_back(c);
            }
        }

        return result;
    }

    /// return syntax error message
    constexpr const char* get_error_message() const noexcept
    {
        return error_message;
    }

    /////////////////////
    // actual scanner
    /////////////////////

    /*!
    @brief skip the UTF-8 byte order mark
    @return true iff there is no BOM or the correct BOM has been skipped
    */
    bool skip_bom()
    {
        if (get() == 0xEF)
        {
            if (get() == 0xBB and get() == 0xBF)
            {
                // we completely parsed the BOM
                return true;
            }
            else
            {
                // after reading 0xEF, an unexpected character followed
                return false;
            }
        }
        else
        {
            // the first character is not the beginning of the BOM; unget it to
            // process is later
            unget();
            return true;
        }
    }

    token_type scan()
    {
        // initially, skip the BOM
        if (chars_read == 0 and not skip_bom())
        {
            error_message = "invalid BOM; must be 0xEF 0xBB 0xBF if given";
            return token_type::parse_error;
        }

        // read next character and ignore whitespace
        do
        {
            get();
        }
        while (current == ' ' or current == '\t' or current == '\n' or current == '\r');

        switch (current)
        {
            // structural characters
            case '[':
                return token_type::begin_array;
            case ']':
                return token_type::end_array;
            case '{':
                return token_type::begin_object;
            case '}':
                return token_type::end_object;
            case ':':
                return token_type::name_separator;
            case ',':
                return token_type::value_separator;

            // literals
            case 't':
                return scan_literal("true", 4, token_type::literal_true);
            case 'f':
                return scan_literal("false", 5, token_type::literal_false);
            case 'n':
                return scan_literal("null", 4, token_type::literal_null);

            // string
            case '\"':
                return scan_string();

            // number
            case '-':
            case '0':
            case '1':
            case '2':
            case '3':
            case '4':
            case '5':
            case '6':
            case '7':
            case '8':
            case '9':
                return scan_number();

            // end of input (the null byte is needed when parsing from
            // string literals)
            case '\0':
            case std::char_traits<char>::eof():
                return token_type::end_of_input;

            // error
            default:
                error_message = "invalid literal";
                return token_type::parse_error;
        }
    }

  private:
    /// input adapter
    detail::input_adapter_t ia = nullptr;

    /// the current character
    std::char_traits<char>::int_type current = std::char_traits<char>::eof();

    /// whether the next get() call should just return current
    bool next_unget = false;

    /// the number of characters read
    std::size_t chars_read = 0;

    /// raw input token string (for error messages)
    std::vector<char> token_string {};

    /// buffer for variable-length tokens (numbers, strings)
    string_t token_buffer {};

    /// a description of occurred lexer errors
    const char* error_message = "";

    // number values
    number_integer_t value_integer = 0;
    number_unsigned_t value_unsigned = 0;
    number_float_t value_float = 0;

    /// the decimal point
    const char decimal_point_char = '.';
};
}
}