1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
|
/*
* Copyright 2019 Adafruit Industries
*
* SPDX-License-Identifier: LGPL-3.0-or-later
*/
/*!
* @file Adafruit_NeoPixel.cpp
*
* @mainpage Arduino Library for driving Adafruit NeoPixel addressable LEDs,
* FLORA RGB Smart Pixels and compatible devicess -- WS2811, WS2812, WS2812B,
* SK6812, etc.
*
* @section intro_sec Introduction
*
* This is the documentation for Adafruit's NeoPixel library for the
* Arduino platform, allowing a broad range of microcontroller boards
* (most AVR boards, many ARM devices, ESP8266 and ESP32, among others)
* to control Adafruit NeoPixels, FLORA RGB Smart Pixels and compatible
* devices -- WS2811, WS2812, WS2812B, SK6812, etc.
*
* Adafruit invests time and resources providing this open source code,
* please support Adafruit and open-source hardware by purchasing products
* from Adafruit!
*
* @section author Author
*
* Written by Phil "Paint Your Dragon" Burgess for Adafruit Industries,
* with contributions by PJRC, Michael Miller and other members of the
* open source community.
*
* @section license License
*
* This file is part of the Adafruit_NeoPixel library.
*
* Adafruit_NeoPixel is free software: you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* Adafruit_NeoPixel is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with NeoPixel. If not, see
* <http://www.gnu.org/licenses/>.
*
*/
#include <stdlib.h>
#include <string.h>
#include <avr/interrupt.h>
#include <avr/io.h>
#include <avr/pgmspace.h>
#include "driver/neopixel.h"
/*!
@brief NeoPixel constructor when length, pin and pixel type are known
at compile-time.
@param n Number of NeoPixels in strand.
@param p Arduino pin number which will drive the NeoPixel data in.
@param t Pixel type -- add together NEO_* constants defined in
Adafruit_NeoPixel.h, for example NEO_GRB+NEO_KHZ800 for
NeoPixels expecting an 800 KHz (vs 400 KHz) data stream
with color bytes expressed in green, red, blue order per
pixel.
@return Adafruit_NeoPixel object. Call the setup() function before use.
*/
Adafruit_NeoPixel::Adafruit_NeoPixel(uint16_t n, uint16_t p, neoPixelType t) :
begun(false), brightness(0), pixels(NULL), endTime(0) {
updateType(t);
updateLength(n);
setPin(p);
}
/*!
@brief "Empty" NeoPixel constructor when length, pin and/or pixel type
are not known at compile-time, and must be initialized later with
updateType(), updateLength() and setPin().
@return Adafruit_NeoPixel object. Call the setup() function before use.
@note This function is deprecated, here only for old projects that
may still be calling it. New projects should instead use the
'new' keyword with the first constructor syntax (length, pin,
type).
*/
Adafruit_NeoPixel::Adafruit_NeoPixel() :
#ifdef NEO_KHZ400
is800KHz(true),
#endif
begun(false), numLEDs(0), numBytes(0), pin(-1), brightness(0), pixels(NULL),
rOffset(1), gOffset(0), bOffset(2), wOffset(1), endTime(0) {
}
/*!
@brief Deallocate Adafruit_NeoPixel object, set data pin back to INPUT.
*/
Adafruit_NeoPixel::~Adafruit_NeoPixel() {
free(pixels);
if(pin >= 0) {
gpio.input(pin);
}
}
/*!
@brief Configure NeoPixel pin for output.
*/
void Adafruit_NeoPixel::setup(void) {
if(pin >= 0) {
gpio.output(pin, 0);
}
begun = true;
}
/*!
@brief Change the length of a previously-declared Adafruit_NeoPixel
strip object. Old data is deallocated and new data is cleared.
Pin number and pixel format are unchanged.
@param n New length of strip, in pixels.
@note This function is deprecated, here only for old projects that
may still be calling it. New projects should instead use the
'new' keyword with the first constructor syntax (length, pin,
type).
*/
void Adafruit_NeoPixel::updateLength(uint16_t n) {
free(pixels); // Free existing data (if any)
// Allocate new data -- note: ALL PIXELS ARE CLEARED
numBytes = n * ((wOffset == rOffset) ? 3 : 4);
if((pixels = (uint8_t *)malloc(numBytes))) {
memset(pixels, 0, numBytes);
numLEDs = n;
} else {
numLEDs = numBytes = 0;
}
}
/*!
@brief Change the pixel format of a previously-declared
Adafruit_NeoPixel strip object. If format changes from one of
the RGB variants to an RGBW variant (or RGBW to RGB), the old
data will be deallocated and new data is cleared. Otherwise,
the old data will remain in RAM and is not reordered to the
new format, so it's advisable to follow up with clear().
@param t Pixel type -- add together NEO_* constants defined in
Adafruit_NeoPixel.h, for example NEO_GRB+NEO_KHZ800 for
NeoPixels expecting an 800 KHz (vs 400 KHz) data stream
with color bytes expressed in green, red, blue order per
pixel.
@note This function is deprecated, here only for old projects that
may still be calling it. New projects should instead use the
'new' keyword with the first constructor syntax
(length, pin, type).
*/
void Adafruit_NeoPixel::updateType(neoPixelType t) {
bool oldThreeBytesPerPixel = (wOffset == rOffset); // false if RGBW
wOffset = (t >> 6) & 0b11; // See notes in header file
rOffset = (t >> 4) & 0b11; // regarding R/G/B/W offsets
gOffset = (t >> 2) & 0b11;
bOffset = t & 0b11;
#ifdef NEO_KHZ400
is800KHz = (t < 256); // 400 KHz flag is 1<<8
#endif
// If bytes-per-pixel has changed (and pixel data was previously
// allocated), re-allocate to new size. Will clear any data.
if(pixels) {
bool newThreeBytesPerPixel = (wOffset == rOffset);
if(newThreeBytesPerPixel != oldThreeBytesPerPixel) updateLength(numLEDs);
}
}
/*!
@brief Transmit pixel data in RAM to NeoPixels.
@note On most architectures, interrupts are temporarily disabled in
order to achieve the correct NeoPixel signal timing. This means
that the Arduino millis() and micros() functions, which require
interrupts, will lose small intervals of time whenever this
function is called (about 30 microseconds per RGB pixel, 40 for
RGBW pixels). There's no easy fix for this, but a few
specialized alternative or companion libraries exist that use
very device-specific peripherals to work around it.
*/
void Adafruit_NeoPixel::show(void) {
if(!pixels) return;
// Data latch = 300+ microsecond pause in the output stream. Rather than
// put a delay at the end of the function, the ending time is noted and
// the function will simply hold off (if needed) on issuing the
// subsequent round of data until the latch time has elapsed. This
// allows the mainline code to start generating the next frame of data
// rather than stalling for the latch.
while(!canShow());
// endTime is a private member (rather than global var) so that multiple
// instances on different pins can be quickly issued in succession (each
// instance doesn't delay the next).
// In order to make this code runtime-configurable to work with any pin,
// SBI/CBI instructions are eschewed in favor of full PORT writes via the
// OUT or ST instructions. It relies on two facts: that peripheral
// functions (such as PWM) take precedence on output pins, so our PORT-
// wide writes won't interfere, and that interrupts are globally disabled
// while data is being issued to the LEDs, so no other code will be
// accessing the PORT. The code takes an initial 'snapshot' of the PORT
// state, computes 'pin high' and 'pin low' values, and writes these back
// to the PORT register as needed.
cli();
// AVR MCUs -- ATmega & ATtiny (no XMEGA) ---------------------------------
volatile uint16_t
i = numBytes; // Loop counter
volatile uint8_t
*ptr = pixels, // Pointer to next byte
b = *ptr++, // Current byte value
hi, // PORT w/output bit set high
lo; // PORT w/output bit set low
// Hand-tuned assembly code issues data to the LED drivers at a specific
// rate. There's separate code for different CPU speeds (8, 12, 16 MHz)
// for both the WS2811 (400 KHz) and WS2812 (800 KHz) drivers. The
// datastream timing for the LED drivers allows a little wiggle room each
// way (listed in the datasheets), so the conditions for compiling each
// case are set up for a range of frequencies rather than just the exact
// 8, 12 or 16 MHz values, permitting use with some close-but-not-spot-on
// devices (e.g. 16.5 MHz DigiSpark). The ranges were arrived at based
// on the datasheet figures and have not been extensively tested outside
// the canonical 8/12/16 MHz speeds; there's no guarantee these will work
// close to the extremes (or possibly they could be pushed further).
// Keep in mind only one CPU speed case actually gets compiled; the
// resulting program isn't as massive as it might look from source here.
// 8 MHz(ish) AVR ---------------------------------------------------------
#if (F_CPU >= 7400000UL) && (F_CPU <= 9500000UL)
#ifdef NEO_KHZ400 // 800 KHz check needed only if 400 KHz support enabled
if(is800KHz) {
#endif
volatile uint8_t n1, n2 = 0; // First, next bits out
// Squeezing an 800 KHz stream out of an 8 MHz chip requires code
// specific to each PORT register.
// 10 instruction clocks per bit: HHxxxxxLLL
// OUT instructions: ^ ^ ^ (T=0,2,7)
// PORTD OUTPUT ----------------------------------------------------
#if defined(PORTD)
#if defined(PORTB) || defined(PORTC) || defined(PORTF)
if(port == &PORTD) {
#endif // defined(PORTB/C/F)
hi = PORTD | pinMask;
lo = PORTD & ~pinMask;
n1 = lo;
if(b & 0x80) n1 = hi;
// Dirty trick: RJMPs proceeding to the next instruction are used
// to delay two clock cycles in one instruction word (rather than
// using two NOPs). This was necessary in order to squeeze the
// loop down to exactly 64 words -- the maximum possible for a
// relative branch.
asm volatile(
"headD:" "\n\t" // Clk Pseudocode
// Bit 7:
"out %[port] , %[hi]" "\n\t" // 1 PORT = hi
"mov %[n2] , %[lo]" "\n\t" // 1 n2 = lo
"out %[port] , %[n1]" "\n\t" // 1 PORT = n1
"rjmp .+0" "\n\t" // 2 nop nop
"sbrc %[byte] , 6" "\n\t" // 1-2 if(b & 0x40)
"mov %[n2] , %[hi]" "\n\t" // 0-1 n2 = hi
"out %[port] , %[lo]" "\n\t" // 1 PORT = lo
"rjmp .+0" "\n\t" // 2 nop nop
// Bit 6:
"out %[port] , %[hi]" "\n\t" // 1 PORT = hi
"mov %[n1] , %[lo]" "\n\t" // 1 n1 = lo
"out %[port] , %[n2]" "\n\t" // 1 PORT = n2
"rjmp .+0" "\n\t" // 2 nop nop
"sbrc %[byte] , 5" "\n\t" // 1-2 if(b & 0x20)
"mov %[n1] , %[hi]" "\n\t" // 0-1 n1 = hi
"out %[port] , %[lo]" "\n\t" // 1 PORT = lo
"rjmp .+0" "\n\t" // 2 nop nop
// Bit 5:
"out %[port] , %[hi]" "\n\t" // 1 PORT = hi
"mov %[n2] , %[lo]" "\n\t" // 1 n2 = lo
"out %[port] , %[n1]" "\n\t" // 1 PORT = n1
"rjmp .+0" "\n\t" // 2 nop nop
"sbrc %[byte] , 4" "\n\t" // 1-2 if(b & 0x10)
"mov %[n2] , %[hi]" "\n\t" // 0-1 n2 = hi
"out %[port] , %[lo]" "\n\t" // 1 PORT = lo
"rjmp .+0" "\n\t" // 2 nop nop
// Bit 4:
"out %[port] , %[hi]" "\n\t" // 1 PORT = hi
"mov %[n1] , %[lo]" "\n\t" // 1 n1 = lo
"out %[port] , %[n2]" "\n\t" // 1 PORT = n2
"rjmp .+0" "\n\t" // 2 nop nop
"sbrc %[byte] , 3" "\n\t" // 1-2 if(b & 0x08)
"mov %[n1] , %[hi]" "\n\t" // 0-1 n1 = hi
"out %[port] , %[lo]" "\n\t" // 1 PORT = lo
"rjmp .+0" "\n\t" // 2 nop nop
// Bit 3:
"out %[port] , %[hi]" "\n\t" // 1 PORT = hi
"mov %[n2] , %[lo]" "\n\t" // 1 n2 = lo
"out %[port] , %[n1]" "\n\t" // 1 PORT = n1
"rjmp .+0" "\n\t" // 2 nop nop
"sbrc %[byte] , 2" "\n\t" // 1-2 if(b & 0x04)
"mov %[n2] , %[hi]" "\n\t" // 0-1 n2 = hi
"out %[port] , %[lo]" "\n\t" // 1 PORT = lo
"rjmp .+0" "\n\t" // 2 nop nop
// Bit 2:
"out %[port] , %[hi]" "\n\t" // 1 PORT = hi
"mov %[n1] , %[lo]" "\n\t" // 1 n1 = lo
"out %[port] , %[n2]" "\n\t" // 1 PORT = n2
"rjmp .+0" "\n\t" // 2 nop nop
"sbrc %[byte] , 1" "\n\t" // 1-2 if(b & 0x02)
"mov %[n1] , %[hi]" "\n\t" // 0-1 n1 = hi
"out %[port] , %[lo]" "\n\t" // 1 PORT = lo
"rjmp .+0" "\n\t" // 2 nop nop
// Bit 1:
"out %[port] , %[hi]" "\n\t" // 1 PORT = hi
"mov %[n2] , %[lo]" "\n\t" // 1 n2 = lo
"out %[port] , %[n1]" "\n\t" // 1 PORT = n1
"rjmp .+0" "\n\t" // 2 nop nop
"sbrc %[byte] , 0" "\n\t" // 1-2 if(b & 0x01)
"mov %[n2] , %[hi]" "\n\t" // 0-1 n2 = hi
"out %[port] , %[lo]" "\n\t" // 1 PORT = lo
"sbiw %[count], 1" "\n\t" // 2 i-- (don't act on Z flag yet)
// Bit 0:
"out %[port] , %[hi]" "\n\t" // 1 PORT = hi
"mov %[n1] , %[lo]" "\n\t" // 1 n1 = lo
"out %[port] , %[n2]" "\n\t" // 1 PORT = n2
"ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++
"sbrc %[byte] , 7" "\n\t" // 1-2 if(b & 0x80)
"mov %[n1] , %[hi]" "\n\t" // 0-1 n1 = hi
"out %[port] , %[lo]" "\n\t" // 1 PORT = lo
"brne headD" "\n" // 2 while(i) (Z flag set above)
: [byte] "+r" (b),
[n1] "+r" (n1),
[n2] "+r" (n2),
[count] "+w" (i)
: [port] "I" (_SFR_IO_ADDR(PORTD)),
[ptr] "e" (ptr),
[hi] "r" (hi),
[lo] "r" (lo));
#if defined(PORTB) || defined(PORTC) || defined(PORTF)
} else // other PORT(s)
#endif // defined(PORTB/C/F)
#endif // defined(PORTD)
// PORTB OUTPUT ----------------------------------------------------
#if defined(PORTB)
#if defined(PORTD) || defined(PORTC) || defined(PORTF)
if(port == &PORTB) {
#endif // defined(PORTD/C/F)
// Same as above, just switched to PORTB and stripped of comments.
hi = PORTB | pinMask;
lo = PORTB & ~pinMask;
n1 = lo;
if(b & 0x80) n1 = hi;
asm volatile(
"headB:" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 6" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 5" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 4" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 3" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 2" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 1" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 0" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"sbiw %[count], 1" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"ld %[byte] , %a[ptr]+" "\n\t"
"sbrc %[byte] , 7" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"brne headB" "\n"
: [byte] "+r" (b), [n1] "+r" (n1), [n2] "+r" (n2), [count] "+w" (i)
: [port] "I" (_SFR_IO_ADDR(PORTB)), [ptr] "e" (ptr), [hi] "r" (hi),
[lo] "r" (lo));
#if defined(PORTD) || defined(PORTC) || defined(PORTF)
}
#endif
#if defined(PORTC) || defined(PORTF)
else
#endif // defined(PORTC/F)
#endif // defined(PORTB)
// PORTC OUTPUT ----------------------------------------------------
#if defined(PORTC)
#if defined(PORTD) || defined(PORTB) || defined(PORTF)
if(port == &PORTC) {
#endif // defined(PORTD/B/F)
// Same as above, just switched to PORTC and stripped of comments.
hi = PORTC | pinMask;
lo = PORTC & ~pinMask;
n1 = lo;
if(b & 0x80) n1 = hi;
asm volatile(
"headC:" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 6" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 5" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 4" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 3" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 2" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 1" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 0" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"sbiw %[count], 1" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"ld %[byte] , %a[ptr]+" "\n\t"
"sbrc %[byte] , 7" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"brne headC" "\n"
: [byte] "+r" (b), [n1] "+r" (n1), [n2] "+r" (n2), [count] "+w" (i)
: [port] "I" (_SFR_IO_ADDR(PORTC)), [ptr] "e" (ptr), [hi] "r" (hi),
[lo] "r" (lo));
#if defined(PORTD) || defined(PORTB) || defined(PORTF)
}
#endif // defined(PORTD/B/F)
#if defined(PORTF)
else
#endif
#endif // defined(PORTC)
// PORTF OUTPUT ----------------------------------------------------
#if defined(PORTF)
#if defined(PORTD) || defined(PORTB) || defined(PORTC)
if(port == &PORTF) {
#endif // defined(PORTD/B/C)
hi = PORTF | pinMask;
lo = PORTF & ~pinMask;
n1 = lo;
if(b & 0x80) n1 = hi;
asm volatile(
"headF:" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 6" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 5" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 4" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 3" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 2" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 1" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"rjmp .+0" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n2] , %[lo]" "\n\t"
"out %[port] , %[n1]" "\n\t"
"rjmp .+0" "\n\t"
"sbrc %[byte] , 0" "\n\t"
"mov %[n2] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"sbiw %[count], 1" "\n\t"
"out %[port] , %[hi]" "\n\t"
"mov %[n1] , %[lo]" "\n\t"
"out %[port] , %[n2]" "\n\t"
"ld %[byte] , %a[ptr]+" "\n\t"
"sbrc %[byte] , 7" "\n\t"
"mov %[n1] , %[hi]" "\n\t"
"out %[port] , %[lo]" "\n\t"
"brne headF" "\n"
: [byte] "+r" (b), [n1] "+r" (n1), [n2] "+r" (n2), [count] "+w" (i)
: [port] "I" (_SFR_IO_ADDR(PORTF)), [ptr] "e" (ptr), [hi] "r" (hi),
[lo] "r" (lo));
#if defined(PORTD) || defined(PORTB) || defined(PORTC)
}
#endif // defined(PORTD/B/C)
#endif // defined(PORTF)
#ifdef NEO_KHZ400
} else { // end 800 KHz, do 400 KHz
// Timing is more relaxed; unrolling the inner loop for each bit is
// not necessary. Still using the peculiar RJMPs as 2X NOPs, not out
// of need but just to trim the code size down a little.
// This 400-KHz-datastream-on-8-MHz-CPU code is not quite identical
// to the 800-on-16 code later -- the hi/lo timing between WS2811 and
// WS2812 is not simply a 2:1 scale!
// 20 inst. clocks per bit: HHHHxxxxxxLLLLLLLLLL
// ST instructions: ^ ^ ^ (T=0,4,10)
volatile uint8_t next, bit;
hi = *port | pinMask;
lo = *port & ~pinMask;
next = lo;
bit = 8;
asm volatile(
"head20:" "\n\t" // Clk Pseudocode (T = 0)
"st %a[port], %[hi]" "\n\t" // 2 PORT = hi (T = 2)
"sbrc %[byte] , 7" "\n\t" // 1-2 if(b & 128)
"mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 4)
"st %a[port], %[next]" "\n\t" // 2 PORT = next (T = 6)
"mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 7)
"dec %[bit]" "\n\t" // 1 bit-- (T = 8)
"breq nextbyte20" "\n\t" // 1-2 if(bit == 0)
"rol %[byte]" "\n\t" // 1 b <<= 1 (T = 10)
"st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 12)
"rjmp .+0" "\n\t" // 2 nop nop (T = 14)
"rjmp .+0" "\n\t" // 2 nop nop (T = 16)
"rjmp .+0" "\n\t" // 2 nop nop (T = 18)
"rjmp head20" "\n\t" // 2 -> head20 (next bit out)
"nextbyte20:" "\n\t" // (T = 10)
"st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 12)
"nop" "\n\t" // 1 nop (T = 13)
"ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 14)
"ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 16)
"sbiw %[count], 1" "\n\t" // 2 i-- (T = 18)
"brne head20" "\n" // 2 if(i != 0) -> (next byte)
: [port] "+e" (port),
[byte] "+r" (b),
[bit] "+r" (bit),
[next] "+r" (next),
[count] "+w" (i)
: [hi] "r" (hi),
[lo] "r" (lo),
[ptr] "e" (ptr));
}
#endif // NEO_KHZ400
// 12 MHz(ish) AVR --------------------------------------------------------
#elif (F_CPU >= 11100000UL) && (F_CPU <= 14300000UL)
#ifdef NEO_KHZ400 // 800 KHz check needed only if 400 KHz support enabled
if(is800KHz) {
#endif
// In the 12 MHz case, an optimized 800 KHz datastream (no dead time
// between bytes) requires a PORT-specific loop similar to the 8 MHz
// code (but a little more relaxed in this case).
// 15 instruction clocks per bit: HHHHxxxxxxLLLLL
// OUT instructions: ^ ^ ^ (T=0,4,10)
volatile uint8_t next;
// PORTD OUTPUT ----------------------------------------------------
#if defined(PORTD)
#if defined(PORTB) || defined(PORTC) || defined(PORTF)
if(port == &PORTD) {
#endif // defined(PORTB/C/F)
hi = PORTD | pinMask;
lo = PORTD & ~pinMask;
next = lo;
if(b & 0x80) next = hi;
// Don't "optimize" the OUT calls into the bitTime subroutine;
// we're exploiting the RCALL and RET as 3- and 4-cycle NOPs!
asm volatile(
"headD:" "\n\t" // (T = 0)
"out %[port], %[hi]" "\n\t" // (T = 1)
"rcall bitTimeD" "\n\t" // Bit 7 (T = 15)
"out %[port], %[hi]" "\n\t"
"rcall bitTimeD" "\n\t" // Bit 6
"out %[port], %[hi]" "\n\t"
"rcall bitTimeD" "\n\t" // Bit 5
"out %[port], %[hi]" "\n\t"
"rcall bitTimeD" "\n\t" // Bit 4
"out %[port], %[hi]" "\n\t"
"rcall bitTimeD" "\n\t" // Bit 3
"out %[port], %[hi]" "\n\t"
"rcall bitTimeD" "\n\t" // Bit 2
"out %[port], %[hi]" "\n\t"
"rcall bitTimeD" "\n\t" // Bit 1
// Bit 0:
"out %[port] , %[hi]" "\n\t" // 1 PORT = hi (T = 1)
"rjmp .+0" "\n\t" // 2 nop nop (T = 3)
"ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 5)
"out %[port] , %[next]" "\n\t" // 1 PORT = next (T = 6)
"mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 7)
"sbrc %[byte] , 7" "\n\t" // 1-2 if(b & 0x80) (T = 8)
"mov %[next] , %[hi]" "\n\t" // 0-1 next = hi (T = 9)
"nop" "\n\t" // 1 (T = 10)
"out %[port] , %[lo]" "\n\t" // 1 PORT = lo (T = 11)
"sbiw %[count], 1" "\n\t" // 2 i-- (T = 13)
"brne headD" "\n\t" // 2 if(i != 0) -> (next byte)
"rjmp doneD" "\n\t"
"bitTimeD:" "\n\t" // nop nop nop (T = 4)
"out %[port], %[next]" "\n\t" // 1 PORT = next (T = 5)
"mov %[next], %[lo]" "\n\t" // 1 next = lo (T = 6)
"rol %[byte]" "\n\t" // 1 b <<= 1 (T = 7)
"sbrc %[byte], 7" "\n\t" // 1-2 if(b & 0x80) (T = 8)
"mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 9)
"nop" "\n\t" // 1 (T = 10)
"out %[port], %[lo]" "\n\t" // 1 PORT = lo (T = 11)
"ret" "\n\t" // 4 nop nop nop nop (T = 15)
"doneD:" "\n"
: [byte] "+r" (b),
[next] "+r" (next),
[count] "+w" (i)
: [port] "I" (_SFR_IO_ADDR(PORTD)),
[ptr] "e" (ptr),
[hi] "r" (hi),
[lo] "r" (lo));
#if defined(PORTB) || defined(PORTC) || defined(PORTF)
} else // other PORT(s)
#endif // defined(PORTB/C/F)
#endif // defined(PORTD)
// PORTB OUTPUT ----------------------------------------------------
#if defined(PORTB)
#if defined(PORTD) || defined(PORTC) || defined(PORTF)
if(port == &PORTB) {
#endif // defined(PORTD/C/F)
hi = PORTB | pinMask;
lo = PORTB & ~pinMask;
next = lo;
if(b & 0x80) next = hi;
// Same as above, just set for PORTB & stripped of comments
asm volatile(
"headB:" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeB" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeB" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeB" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeB" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeB" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeB" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeB" "\n\t"
"out %[port] , %[hi]" "\n\t"
"rjmp .+0" "\n\t"
"ld %[byte] , %a[ptr]+" "\n\t"
"out %[port] , %[next]" "\n\t"
"mov %[next] , %[lo]" "\n\t"
"sbrc %[byte] , 7" "\n\t"
"mov %[next] , %[hi]" "\n\t"
"nop" "\n\t"
"out %[port] , %[lo]" "\n\t"
"sbiw %[count], 1" "\n\t"
"brne headB" "\n\t"
"rjmp doneB" "\n\t"
"bitTimeB:" "\n\t"
"out %[port], %[next]" "\n\t"
"mov %[next], %[lo]" "\n\t"
"rol %[byte]" "\n\t"
"sbrc %[byte], 7" "\n\t"
"mov %[next], %[hi]" "\n\t"
"nop" "\n\t"
"out %[port], %[lo]" "\n\t"
"ret" "\n\t"
"doneB:" "\n"
: [byte] "+r" (b), [next] "+r" (next), [count] "+w" (i)
: [port] "I" (_SFR_IO_ADDR(PORTB)), [ptr] "e" (ptr), [hi] "r" (hi),
[lo] "r" (lo));
#if defined(PORTD) || defined(PORTC) || defined(PORTF)
}
#endif
#if defined(PORTC) || defined(PORTF)
else
#endif // defined(PORTC/F)
#endif // defined(PORTB)
// PORTC OUTPUT ----------------------------------------------------
#if defined(PORTC)
#if defined(PORTD) || defined(PORTB) || defined(PORTF)
if(port == &PORTC) {
#endif // defined(PORTD/B/F)
hi = PORTC | pinMask;
lo = PORTC & ~pinMask;
next = lo;
if(b & 0x80) next = hi;
// Same as above, just set for PORTC & stripped of comments
asm volatile(
"headC:" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port] , %[hi]" "\n\t"
"rjmp .+0" "\n\t"
"ld %[byte] , %a[ptr]+" "\n\t"
"out %[port] , %[next]" "\n\t"
"mov %[next] , %[lo]" "\n\t"
"sbrc %[byte] , 7" "\n\t"
"mov %[next] , %[hi]" "\n\t"
"nop" "\n\t"
"out %[port] , %[lo]" "\n\t"
"sbiw %[count], 1" "\n\t"
"brne headC" "\n\t"
"rjmp doneC" "\n\t"
"bitTimeC:" "\n\t"
"out %[port], %[next]" "\n\t"
"mov %[next], %[lo]" "\n\t"
"rol %[byte]" "\n\t"
"sbrc %[byte], 7" "\n\t"
"mov %[next], %[hi]" "\n\t"
"nop" "\n\t"
"out %[port], %[lo]" "\n\t"
"ret" "\n\t"
"doneC:" "\n"
: [byte] "+r" (b), [next] "+r" (next), [count] "+w" (i)
: [port] "I" (_SFR_IO_ADDR(PORTC)), [ptr] "e" (ptr), [hi] "r" (hi),
[lo] "r" (lo));
#if defined(PORTD) || defined(PORTB) || defined(PORTF)
}
#endif // defined(PORTD/B/F)
#if defined(PORTF)
else
#endif
#endif // defined(PORTC)
// PORTF OUTPUT ----------------------------------------------------
#if defined(PORTF)
#if defined(PORTD) || defined(PORTB) || defined(PORTC)
if(port == &PORTF) {
#endif // defined(PORTD/B/C)
hi = PORTF | pinMask;
lo = PORTF & ~pinMask;
next = lo;
if(b & 0x80) next = hi;
// Same as above, just set for PORTF & stripped of comments
asm volatile(
"headF:" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port], %[hi]" "\n\t"
"rcall bitTimeC" "\n\t"
"out %[port] , %[hi]" "\n\t"
"rjmp .+0" "\n\t"
"ld %[byte] , %a[ptr]+" "\n\t"
"out %[port] , %[next]" "\n\t"
"mov %[next] , %[lo]" "\n\t"
"sbrc %[byte] , 7" "\n\t"
"mov %[next] , %[hi]" "\n\t"
"nop" "\n\t"
"out %[port] , %[lo]" "\n\t"
"sbiw %[count], 1" "\n\t"
"brne headF" "\n\t"
"rjmp doneC" "\n\t"
"bitTimeC:" "\n\t"
"out %[port], %[next]" "\n\t"
"mov %[next], %[lo]" "\n\t"
"rol %[byte]" "\n\t"
"sbrc %[byte], 7" "\n\t"
"mov %[next], %[hi]" "\n\t"
"nop" "\n\t"
"out %[port], %[lo]" "\n\t"
"ret" "\n\t"
"doneC:" "\n"
: [byte] "+r" (b), [next] "+r" (next), [count] "+w" (i)
: [port] "I" (_SFR_IO_ADDR(PORTF)), [ptr] "e" (ptr), [hi] "r" (hi),
[lo] "r" (lo));
#if defined(PORTD) || defined(PORTB) || defined(PORTC)
}
#endif // defined(PORTD/B/C)
#endif // defined(PORTF)
#ifdef NEO_KHZ400
} else { // 400 KHz
// 30 instruction clocks per bit: HHHHHHxxxxxxxxxLLLLLLLLLLLLLLL
// ST instructions: ^ ^ ^ (T=0,6,15)
volatile uint8_t next, bit;
hi = *port | pinMask;
lo = *port & ~pinMask;
next = lo;
bit = 8;
asm volatile(
"head30:" "\n\t" // Clk Pseudocode (T = 0)
"st %a[port], %[hi]" "\n\t" // 2 PORT = hi (T = 2)
"sbrc %[byte] , 7" "\n\t" // 1-2 if(b & 128)
"mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 4)
"rjmp .+0" "\n\t" // 2 nop nop (T = 6)
"st %a[port], %[next]" "\n\t" // 2 PORT = next (T = 8)
"rjmp .+0" "\n\t" // 2 nop nop (T = 10)
"rjmp .+0" "\n\t" // 2 nop nop (T = 12)
"rjmp .+0" "\n\t" // 2 nop nop (T = 14)
"nop" "\n\t" // 1 nop (T = 15)
"st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 17)
"rjmp .+0" "\n\t" // 2 nop nop (T = 19)
"dec %[bit]" "\n\t" // 1 bit-- (T = 20)
"breq nextbyte30" "\n\t" // 1-2 if(bit == 0)
"rol %[byte]" "\n\t" // 1 b <<= 1 (T = 22)
"rjmp .+0" "\n\t" // 2 nop nop (T = 24)
"rjmp .+0" "\n\t" // 2 nop nop (T = 26)
"rjmp .+0" "\n\t" // 2 nop nop (T = 28)
"rjmp head30" "\n\t" // 2 -> head30 (next bit out)
"nextbyte30:" "\n\t" // (T = 22)
"nop" "\n\t" // 1 nop (T = 23)
"ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 24)
"ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 26)
"sbiw %[count], 1" "\n\t" // 2 i-- (T = 28)
"brne head30" "\n" // 1-2 if(i != 0) -> (next byte)
: [port] "+e" (port),
[byte] "+r" (b),
[bit] "+r" (bit),
[next] "+r" (next),
[count] "+w" (i)
: [hi] "r" (hi),
[lo] "r" (lo),
[ptr] "e" (ptr));
}
#endif // NEO_KHZ400
// 16 MHz(ish) AVR --------------------------------------------------------
#elif (F_CPU >= 15400000UL) && (F_CPU <= 19000000L)
#ifdef NEO_KHZ400 // 800 KHz check needed only if 400 KHz support enabled
if(is800KHz) {
#endif
// WS2811 and WS2812 have different hi/lo duty cycles; this is
// similar but NOT an exact copy of the prior 400-on-8 code.
// 20 inst. clocks per bit: HHHHHxxxxxxxxLLLLLLL
// ST instructions: ^ ^ ^ (T=0,5,13)
volatile uint8_t next, bit;
hi = *port | pinMask;
lo = *port & ~pinMask;
next = lo;
bit = 8;
asm volatile(
"head20:" "\n\t" // Clk Pseudocode (T = 0)
"st %a[port], %[hi]" "\n\t" // 2 PORT = hi (T = 2)
"sbrc %[byte], 7" "\n\t" // 1-2 if(b & 128)
"mov %[next], %[hi]" "\n\t" // 0-1 next = hi (T = 4)
"dec %[bit]" "\n\t" // 1 bit-- (T = 5)
"st %a[port], %[next]" "\n\t" // 2 PORT = next (T = 7)
"mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 8)
"breq nextbyte20" "\n\t" // 1-2 if(bit == 0) (from dec above)
"rol %[byte]" "\n\t" // 1 b <<= 1 (T = 10)
"rjmp .+0" "\n\t" // 2 nop nop (T = 12)
"nop" "\n\t" // 1 nop (T = 13)
"st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 15)
"nop" "\n\t" // 1 nop (T = 16)
"rjmp .+0" "\n\t" // 2 nop nop (T = 18)
"rjmp head20" "\n\t" // 2 -> head20 (next bit out)
"nextbyte20:" "\n\t" // (T = 10)
"ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 11)
"ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 13)
"st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 15)
"nop" "\n\t" // 1 nop (T = 16)
"sbiw %[count], 1" "\n\t" // 2 i-- (T = 18)
"brne head20" "\n" // 2 if(i != 0) -> (next byte)
: [port] "+e" (port),
[byte] "+r" (b),
[bit] "+r" (bit),
[next] "+r" (next),
[count] "+w" (i)
: [ptr] "e" (ptr),
[hi] "r" (hi),
[lo] "r" (lo));
#ifdef NEO_KHZ400
} else { // 400 KHz
// The 400 KHz clock on 16 MHz MCU is the most 'relaxed' version.
// 40 inst. clocks per bit: HHHHHHHHxxxxxxxxxxxxLLLLLLLLLLLLLLLLLLLL
// ST instructions: ^ ^ ^ (T=0,8,20)
volatile uint8_t next, bit;
hi = *port | pinMask;
lo = *port & ~pinMask;
next = lo;
bit = 8;
asm volatile(
"head40:" "\n\t" // Clk Pseudocode (T = 0)
"st %a[port], %[hi]" "\n\t" // 2 PORT = hi (T = 2)
"sbrc %[byte] , 7" "\n\t" // 1-2 if(b & 128)
"mov %[next] , %[hi]" "\n\t" // 0-1 next = hi (T = 4)
"rjmp .+0" "\n\t" // 2 nop nop (T = 6)
"rjmp .+0" "\n\t" // 2 nop nop (T = 8)
"st %a[port], %[next]" "\n\t" // 2 PORT = next (T = 10)
"rjmp .+0" "\n\t" // 2 nop nop (T = 12)
"rjmp .+0" "\n\t" // 2 nop nop (T = 14)
"rjmp .+0" "\n\t" // 2 nop nop (T = 16)
"rjmp .+0" "\n\t" // 2 nop nop (T = 18)
"rjmp .+0" "\n\t" // 2 nop nop (T = 20)
"st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 22)
"nop" "\n\t" // 1 nop (T = 23)
"mov %[next] , %[lo]" "\n\t" // 1 next = lo (T = 24)
"dec %[bit]" "\n\t" // 1 bit-- (T = 25)
"breq nextbyte40" "\n\t" // 1-2 if(bit == 0)
"rol %[byte]" "\n\t" // 1 b <<= 1 (T = 27)
"nop" "\n\t" // 1 nop (T = 28)
"rjmp .+0" "\n\t" // 2 nop nop (T = 30)
"rjmp .+0" "\n\t" // 2 nop nop (T = 32)
"rjmp .+0" "\n\t" // 2 nop nop (T = 34)
"rjmp .+0" "\n\t" // 2 nop nop (T = 36)
"rjmp .+0" "\n\t" // 2 nop nop (T = 38)
"rjmp head40" "\n\t" // 2 -> head40 (next bit out)
"nextbyte40:" "\n\t" // (T = 27)
"ldi %[bit] , 8" "\n\t" // 1 bit = 8 (T = 28)
"ld %[byte] , %a[ptr]+" "\n\t" // 2 b = *ptr++ (T = 30)
"rjmp .+0" "\n\t" // 2 nop nop (T = 32)
"st %a[port], %[lo]" "\n\t" // 2 PORT = lo (T = 34)
"rjmp .+0" "\n\t" // 2 nop nop (T = 36)
"sbiw %[count], 1" "\n\t" // 2 i-- (T = 38)
"brne head40" "\n" // 1-2 if(i != 0) -> (next byte)
: [port] "+e" (port),
[byte] "+r" (b),
[bit] "+r" (bit),
[next] "+r" (next),
[count] "+w" (i)
: [ptr] "e" (ptr),
[hi] "r" (hi),
[lo] "r" (lo));
}
#endif // NEO_KHZ400
#else
#error "CPU SPEED NOT SUPPORTED"
#endif // end F_CPU ifdefs on __AVR__
// END AVR ----------------------------------------------------------------
// END ARCHITECTURE SELECT ------------------------------------------------
sei();
//endTime = micros(); // Save EOD time for latch on next call
}
/*!
@brief Set/change the NeoPixel output pin number. Previous pin,
if any, is set to INPUT and the new pin is set to OUTPUT.
@param p Arduino pin number (-1 = no pin).
*/
void Adafruit_NeoPixel::setPin(uint16_t p) {
if(begun && (pin >= 0)) gpio.input(pin);
pin = p;
if(begun) {
gpio.output(pin, 0);
}
#ifdef __AVR__
port = gpio.pinToPort(p);
pinMask = gpio.pinToBitmask(p);
#endif
}
/*!
@brief Set a pixel's color using separate red, green and blue
components. If using RGBW pixels, white will be set to 0.
@param n Pixel index, starting from 0.
@param r Red brightness, 0 = minimum (off), 255 = maximum.
@param g Green brightness, 0 = minimum (off), 255 = maximum.
@param b Blue brightness, 0 = minimum (off), 255 = maximum.
*/
void Adafruit_NeoPixel::setPixelColor(
uint16_t n, uint8_t r, uint8_t g, uint8_t b) {
if(n < numLEDs) {
if(brightness) { // See notes in setBrightness()
r = (r * brightness) >> 8;
g = (g * brightness) >> 8;
b = (b * brightness) >> 8;
}
uint8_t *p;
if(wOffset == rOffset) { // Is an RGB-type strip
p = &pixels[n * 3]; // 3 bytes per pixel
} else { // Is a WRGB-type strip
p = &pixels[n * 4]; // 4 bytes per pixel
p[wOffset] = 0; // But only R,G,B passed -- set W to 0
}
p[rOffset] = r; // R,G,B always stored
p[gOffset] = g;
p[bOffset] = b;
}
}
/*!
@brief Set a pixel's color using separate red, green, blue and white
components (for RGBW NeoPixels only).
@param n Pixel index, starting from 0.
@param r Red brightness, 0 = minimum (off), 255 = maximum.
@param g Green brightness, 0 = minimum (off), 255 = maximum.
@param b Blue brightness, 0 = minimum (off), 255 = maximum.
@param w White brightness, 0 = minimum (off), 255 = maximum, ignored
if using RGB pixels.
*/
void Adafruit_NeoPixel::setPixelColor(
uint16_t n, uint8_t r, uint8_t g, uint8_t b, uint8_t w) {
if(n < numLEDs) {
if(brightness) { // See notes in setBrightness()
r = (r * brightness) >> 8;
g = (g * brightness) >> 8;
b = (b * brightness) >> 8;
w = (w * brightness) >> 8;
}
uint8_t *p;
if(wOffset == rOffset) { // Is an RGB-type strip
p = &pixels[n * 3]; // 3 bytes per pixel (ignore W)
} else { // Is a WRGB-type strip
p = &pixels[n * 4]; // 4 bytes per pixel
p[wOffset] = w; // Store W
}
p[rOffset] = r; // Store R,G,B
p[gOffset] = g;
p[bOffset] = b;
}
}
/*!
@brief Set a pixel's color using a 32-bit 'packed' RGB or RGBW value.
@param n Pixel index, starting from 0.
@param c 32-bit color value. Most significant byte is white (for RGBW
pixels) or ignored (for RGB pixels), next is red, then green,
and least significant byte is blue.
*/
void Adafruit_NeoPixel::setPixelColor(uint16_t n, uint32_t c) {
if(n < numLEDs) {
uint8_t *p,
r = (uint8_t)(c >> 16),
g = (uint8_t)(c >> 8),
b = (uint8_t)c;
if(brightness) { // See notes in setBrightness()
r = (r * brightness) >> 8;
g = (g * brightness) >> 8;
b = (b * brightness) >> 8;
}
if(wOffset == rOffset) {
p = &pixels[n * 3];
} else {
p = &pixels[n * 4];
uint8_t w = (uint8_t)(c >> 24);
p[wOffset] = brightness ? ((w * brightness) >> 8) : w;
}
p[rOffset] = r;
p[gOffset] = g;
p[bOffset] = b;
}
}
/*!
@brief Fill all or part of the NeoPixel strip with a color.
@param c 32-bit color value. Most significant byte is white (for
RGBW pixels) or ignored (for RGB pixels), next is red,
then green, and least significant byte is blue. If all
arguments are unspecified, this will be 0 (off).
@param first Index of first pixel to fill, starting from 0. Must be
in-bounds, no clipping is performed. 0 if unspecified.
@param count Number of pixels to fill, as a positive value. Passing
0 or leaving unspecified will fill to end of strip.
*/
void Adafruit_NeoPixel::fill(uint32_t c, uint16_t first, uint16_t count) {
uint16_t i, end;
if(first >= numLEDs) {
return; // If first LED is past end of strip, nothing to do
}
// Calculate the index ONE AFTER the last pixel to fill
if(count == 0) {
// Fill to end of strip
end = numLEDs;
} else {
// Ensure that the loop won't go past the last pixel
end = first + count;
if(end > numLEDs) end = numLEDs;
}
for(i = first; i < end; i++) {
this->setPixelColor(i, c);
}
}
/*!
@brief Convert hue, saturation and value into a packed 32-bit RGB color
that can be passed to setPixelColor() or other RGB-compatible
functions.
@param hue An unsigned 16-bit value, 0 to 65535, representing one full
loop of the color wheel, which allows 16-bit hues to "roll
over" while still doing the expected thing (and allowing
more precision than the wheel() function that was common to
prior NeoPixel examples).
@param sat Saturation, 8-bit value, 0 (min or pure grayscale) to 255
(max or pure hue). Default of 255 if unspecified.
@param val Value (brightness), 8-bit value, 0 (min / black / off) to
255 (max or full brightness). Default of 255 if unspecified.
@return Packed 32-bit RGB with the most significant byte set to 0 -- the
white element of WRGB pixels is NOT utilized. Result is linearly
but not perceptually correct, so you may want to pass the result
through the gamma32() function (or your own gamma-correction
operation) else colors may appear washed out. This is not done
automatically by this function because coders may desire a more
refined gamma-correction function than the simplified
one-size-fits-all operation of gamma32(). Diffusing the LEDs also
really seems to help when using low-saturation colors.
*/
uint32_t Adafruit_NeoPixel::ColorHSV(uint16_t hue, uint8_t sat, uint8_t val) {
uint8_t r, g, b;
// Remap 0-65535 to 0-1529. Pure red is CENTERED on the 64K rollover;
// 0 is not the start of pure red, but the midpoint...a few values above
// zero and a few below 65536 all yield pure red (similarly, 32768 is the
// midpoint, not start, of pure cyan). The 8-bit RGB hexcone (256 values
// each for red, green, blue) really only allows for 1530 distinct hues
// (not 1536, more on that below), but the full unsigned 16-bit type was
// chosen for hue so that one's code can easily handle a contiguous color
// wheel by allowing hue to roll over in either direction.
hue = (hue * 1530L + 32768) / 65536;
// Because red is centered on the rollover point (the +32768 above,
// essentially a fixed-point +0.5), the above actually yields 0 to 1530,
// where 0 and 1530 would yield the same thing. Rather than apply a
// costly modulo operator, 1530 is handled as a special case below.
// So you'd think that the color "hexcone" (the thing that ramps from
// pure red, to pure yellow, to pure green and so forth back to red,
// yielding six slices), and with each color component having 256
// possible values (0-255), might have 1536 possible items (6*256),
// but in reality there's 1530. This is because the last element in
// each 256-element slice is equal to the first element of the next
// slice, and keeping those in there this would create small
// discontinuities in the color wheel. So the last element of each
// slice is dropped...we regard only elements 0-254, with item 255
// being picked up as element 0 of the next slice. Like this:
// Red to not-quite-pure-yellow is: 255, 0, 0 to 255, 254, 0
// Pure yellow to not-quite-pure-green is: 255, 255, 0 to 1, 255, 0
// Pure green to not-quite-pure-cyan is: 0, 255, 0 to 0, 255, 254
// and so forth. Hence, 1530 distinct hues (0 to 1529), and hence why
// the constants below are not the multiples of 256 you might expect.
// Convert hue to R,G,B (nested ifs faster than divide+mod+switch):
if(hue < 510) { // Red to Green-1
b = 0;
if(hue < 255) { // Red to Yellow-1
r = 255;
g = hue; // g = 0 to 254
} else { // Yellow to Green-1
r = 510 - hue; // r = 255 to 1
g = 255;
}
} else if(hue < 1020) { // Green to Blue-1
r = 0;
if(hue < 765) { // Green to Cyan-1
g = 255;
b = hue - 510; // b = 0 to 254
} else { // Cyan to Blue-1
g = 1020 - hue; // g = 255 to 1
b = 255;
}
} else if(hue < 1530) { // Blue to Red-1
g = 0;
if(hue < 1275) { // Blue to Magenta-1
r = hue - 1020; // r = 0 to 254
b = 255;
} else { // Magenta to Red-1
r = 255;
b = 1530 - hue; // b = 255 to 1
}
} else { // Last 0.5 Red (quicker than % operator)
r = 255;
g = b = 0;
}
// Apply saturation and value to R,G,B, pack into 32-bit result:
uint32_t v1 = 1 + val; // 1 to 256; allows >>8 instead of /255
uint16_t s1 = 1 + sat; // 1 to 256; same reason
uint8_t s2 = 255 - sat; // 255 to 0
return ((((((r * s1) >> 8) + s2) * v1) & 0xff00) << 8) |
(((((g * s1) >> 8) + s2) * v1) & 0xff00) |
( ((((b * s1) >> 8) + s2) * v1) >> 8);
}
/*!
@brief Query the color of a previously-set pixel.
@param n Index of pixel to read (0 = first).
@return 'Packed' 32-bit RGB or WRGB value. Most significant byte is white
(for RGBW pixels) or 0 (for RGB pixels), next is red, then green,
and least significant byte is blue.
@note If the strip brightness has been changed from the default value
of 255, the color read from a pixel may not exactly match what
was previously written with one of the setPixelColor() functions.
This gets more pronounced at lower brightness levels.
*/
uint32_t Adafruit_NeoPixel::getPixelColor(uint16_t n) const {
if(n >= numLEDs) return 0; // Out of bounds, return no color.
uint8_t *p;
if(wOffset == rOffset) { // Is RGB-type device
p = &pixels[n * 3];
if(brightness) {
// Stored color was decimated by setBrightness(). Returned value
// attempts to scale back to an approximation of the original 24-bit
// value used when setting the pixel color, but there will always be
// some error -- those bits are simply gone. Issue is most
// pronounced at low brightness levels.
return (((uint32_t)(p[rOffset] << 8) / brightness) << 16) |
(((uint32_t)(p[gOffset] << 8) / brightness) << 8) |
( (uint32_t)(p[bOffset] << 8) / brightness );
} else {
// No brightness adjustment has been made -- return 'raw' color
return ((uint32_t)p[rOffset] << 16) |
((uint32_t)p[gOffset] << 8) |
(uint32_t)p[bOffset];
}
} else { // Is RGBW-type device
p = &pixels[n * 4];
if(brightness) { // Return scaled color
return (((uint32_t)(p[wOffset] << 8) / brightness) << 24) |
(((uint32_t)(p[rOffset] << 8) / brightness) << 16) |
(((uint32_t)(p[gOffset] << 8) / brightness) << 8) |
( (uint32_t)(p[bOffset] << 8) / brightness );
} else { // Return raw color
return ((uint32_t)p[wOffset] << 24) |
((uint32_t)p[rOffset] << 16) |
((uint32_t)p[gOffset] << 8) |
(uint32_t)p[bOffset];
}
}
}
/*!
@brief Adjust output brightness. Does not immediately affect what's
currently displayed on the LEDs. The next call to show() will
refresh the LEDs at this level.
@param b Brightness setting, 0=minimum (off), 255=brightest.
@note This was intended for one-time use in one's setup() function,
not as an animation effect in itself. Because of the way this
library "pre-multiplies" LED colors in RAM, changing the
brightness is often a "lossy" operation -- what you write to
pixels isn't necessary the same as what you'll read back.
Repeated brightness changes using this function exacerbate the
problem. Smart programs therefore treat the strip as a
write-only resource, maintaining their own state to render each
frame of an animation, not relying on read-modify-write.
*/
void Adafruit_NeoPixel::setBrightness(uint8_t b) {
// Stored brightness value is different than what's passed.
// This simplifies the actual scaling math later, allowing a fast
// 8x8-bit multiply and taking the MSB. 'brightness' is a uint8_t,
// adding 1 here may (intentionally) roll over...so 0 = max brightness
// (color values are interpreted literally; no scaling), 1 = min
// brightness (off), 255 = just below max brightness.
uint8_t newBrightness = b + 1;
if(newBrightness != brightness) { // Compare against prior value
// Brightness has changed -- re-scale existing data in RAM,
// This process is potentially "lossy," especially when increasing
// brightness. The tight timing in the WS2811/WS2812 code means there
// aren't enough free cycles to perform this scaling on the fly as data
// is issued. So we make a pass through the existing color data in RAM
// and scale it (subsequent graphics commands also work at this
// brightness level). If there's a significant step up in brightness,
// the limited number of steps (quantization) in the old data will be
// quite visible in the re-scaled version. For a non-destructive
// change, you'll need to re-render the full strip data. C'est la vie.
uint8_t c,
*ptr = pixels,
oldBrightness = brightness - 1; // De-wrap old brightness value
uint16_t scale;
if(oldBrightness == 0) scale = 0; // Avoid /0
else if(b == 255) scale = 65535 / oldBrightness;
else scale = (((uint16_t)newBrightness << 8) - 1) / oldBrightness;
for(uint16_t i=0; i<numBytes; i++) {
c = *ptr;
*ptr++ = (c * scale) >> 8;
}
brightness = newBrightness;
}
}
/*!
@brief Retrieve the last-set brightness value for the strip.
@return Brightness value: 0 = minimum (off), 255 = maximum.
*/
uint8_t Adafruit_NeoPixel::getBrightness(void) const {
return brightness - 1;
}
/*!
@brief Fill the whole NeoPixel strip with 0 / black / off.
*/
void Adafruit_NeoPixel::clear(void) {
memset(pixels, 0, numBytes);
}
// A 32-bit variant of gamma8() that applies the same function
// to all components of a packed RGB or WRGB value.
uint32_t Adafruit_NeoPixel::gamma32(uint32_t x) {
uint8_t *y = (uint8_t *)&x;
// All four bytes of a 32-bit value are filtered even if RGB (not WRGB),
// to avoid a bunch of shifting and masking that would be necessary for
// properly handling different endianisms (and each byte is a fairly
// trivial operation, so it might not even be wasting cycles vs a check
// and branch for the RGB case). In theory this might cause trouble *if*
// someone's storing information in the unused most significant byte
// of an RGB value, but this seems exceedingly rare and if it's
// encountered in reality they can mask values going in or coming out.
for(uint8_t i=0; i<4; i++) y[i] = gamma8(y[i]);
return x; // Packed 32-bit return
}
|