blob: df27f33f99de0e2346d8a1caa131c5a48c853120 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
/*
* Copyright 2020 Daniel Friesel
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include "arch.h"
#include <msp430.h>
#ifdef __acweaving
#define __delay_cycles(x)
#endif
void Arch::setup(void)
{
WDTCTL = WDTPW | WDTHOLD;
PJSEL0 = BIT4 | BIT5;
PM5CTL0 &= ~LOCKLPM5;
/*
* Note: arch drivers assume SMCLK freq == F_CPU
*/
#if F_CPU == 16000000UL
FRCTL0 = FWPW; // unlock FRAM Control
FRCTL0_L = 0x10; // one wait state before FRAM access (required for 8MHz < F_CPU <= 16 MHz)
FRCTL0_H = 0xff; // lock FRAM control by writing an invalid password
// 16MHz DCO
CSCTL0_H = CSKEY >> 8;
CSCTL1 = DCORSEL | DCOFSEL_4;
#elif F_CPU == 8000000UL
// 8MHz DCO
CSCTL0_H = CSKEY >> 8;
CSCTL1 = DCOFSEL_6;
#elif F_CPU == 4000000UL
// 8MHz DCO
CSCTL0_H = CSKEY >> 8;
CSCTL1 = DCOFSEL_3;
#elif F_CPU == 1000000UL
// 8MHz DCO
CSCTL0_H = CSKEY >> 8;
CSCTL1 = DCOFSEL_0;
#else
#error Unsupported F_CPU
#endif
#ifdef WITH_LOOP
CSCTL2 = SELA__LFXTCLK | SELS__DCOCLK | SELM__DCOCLK;
#else
CSCTL2 = SELA__VLOCLK | SELS__DCOCLK | SELM__DCOCLK;
#endif
CSCTL3 = DIVA__1 | DIVS__1 | DIVM__1;
CSCTL0_H = 0;
#ifdef WITH_LOOP
// enable LXFT for RTC
CSCTL0_H = CSKEY >> 8;
CSCTL4 &= ~LFXTOFF;
while (SFRIFG1 & OFIFG) {
CSCTL5 &= ~LFXTOFFG;
SFRIFG1 &= ~OFIFG;
}
CSCTL0_H = 0;
__delay_cycles(1000000);
#endif
#ifdef TIMER_US
#if F_CPU == 16000000UL
TA0CTL = TASSEL__SMCLK | ID__8 | MC__CONTINUOUS; // /8
TA0EX0 = 1; // /2 -> /16
#elif F_CPU == 8000000UL
TA0CTL = TASSEL__SMCLK | ID__8 | MC__CONTINUOUS; // /8
TA0EX0 = 0; // /1 -> /8
#elif F_CPU == 4000000UL
TA0CTL = TASSEL__SMCLK | ID__4 | MC__CONTINUOUS; // /4
TA0EX0 = 0; // /1 -> /8
#elif F_CPU == 1000000UL
TA0CTL = TASSEL__SMCLK | ID__1 | MC__CONTINUOUS; // /1
TA0EX0 = 0; // /1 -> /8
#else
#error Unsupported F_CPU
#endif /* F_CPU */
TA0CTL |= TACLR;
#endif /* TIMER_US */
#if defined(WITH_LOOP) || defined(TIMER_S)
// 1s per wakeup for loop. Independent of SMCLK/F_CPU
TA1CTL = TASSEL__ACLK | ID__8 | MC__UP;
TA1EX0 = 0;
TA1CCR0 = 4096;
TA1CTL |= TACLR | TAIE;
#endif
}
#ifdef WITH_WAKEUP
extern void wakeup();
#endif
#if defined(WITH_LOOP)
extern void loop();
volatile char run_loop = 0;
#endif
volatile bool sleep_done = false;
// max delay: 262 ms @ 16 MHz
// max delay: 524 ms @ 8 MHz
void Arch::sleep_ms(unsigned int const ms)
{
if (ms == 0) {
return;
}
sleep_done = false;
#if F_CPU == 16000000UL
TA3CTL = TASSEL__SMCLK | ID__8; // /8
TA3EX0 = 7; // /8 -> /64 (250 kHz)
TA3CCR0 = ms * 250;
#elif F_CPU == 8000000UL
TA3CTL = TASSEL__SMCLK | ID__8; // /8
TA3EX0 = 7; // /8 -> /64 (125 kHz)
TA3CCR0 = ms * 125;
#elif F_CPU == 4000000UL
TA3CTL = TASSEL__SMCLK | ID__8; // /8
TA3EX0 = 3; // /4 -> /32 (125 kHz)
TA3CCR0 = ms * 125;
#elif F_CPU == 1000000UL
TA3CTL = TASSEL__SMCLK | ID__8; // /8
TA3EX0 = 0; // /1 -> /8 (125 kHz)
TA3CCR0 = ms * 125;
#else
#error Unsupported F_CPU
#endif /* F_CPU */
TA3CCTL0 = CCIE;
TA3CTL |= MC__UP | TACLR;
while (!sleep_done) {
asm volatile("nop");
__bis_SR_register(GIE | LPM2_bits);
asm volatile("nop");
__dint();
}
TA3CTL = TASSEL__SMCLK;
}
void Arch::delay_us(unsigned int const us)
{
if (us < 10) {
for (unsigned int i = 0; i < us; i++) {
__delay_cycles(F_CPU / 1000000UL);
}
} else {
for (unsigned int i = 0; i < us/10; i++) {
__delay_cycles(F_CPU / 100000UL);
}
}
}
void Arch::delay_ms(unsigned int const ms)
{
for (unsigned int i = 0; i < ms; i++) {
__delay_cycles(F_CPU / 1000UL);
}
}
void Arch::idle_loop(void)
{
while (1) {
asm volatile("nop");
__bis_SR_register(GIE | LPM2_bits);
asm volatile("nop");
__dint();
#if defined(WITH_LOOP)
if (run_loop) {
loop();
run_loop = 0;
}
#endif
#ifdef WITH_WAKEUP
wakeup();
#endif
}
}
void Arch::idle(void)
{
asm volatile("nop");
__bis_SR_register(GIE | LPM2_bits);
asm volatile("nop");
__dint();
#ifdef WITH_WAKEUP
wakeup();
#endif
}
Arch arch;
#if defined(WITH_LOOP) || defined(TIMER_S)
#include "driver/uptime.h"
#ifndef __acweaving
// overflow interrupts end up in A1 (joint interrupt for CCR1 ... CCR6 and overflow)
__attribute__((interrupt(TIMER1_A1_VECTOR))) __attribute__((wakeup)) void handle_timer1_overflow()
{
if (TA1IV == 0x0e) {
#ifdef WITH_LOOP
run_loop = 1;
#endif
#ifdef TIMER_S
uptime.tick_s();
#endif
}
}
#endif
#endif /* defined(WITH_LOOP) || defined(TIMER_S) */
#ifndef __acweaving
// CCR0 interrupts are exclusive to A0
__attribute__((interrupt(TIMER3_A0_VECTOR))) __attribute__((wakeup)) void handle_timer3_ccr0()
{
sleep_done = true;
}
#endif /* __acweaving */
|